2011
DOI: 10.1021/ja110805b
|View full text |Cite
|
Sign up to set email alerts
|

The Nature of the Catalytically Active Species in Olefin Dioxygenation with PhI(OAc)2: Metal or Proton?

Abstract: Evidence for the protiocatalytic nature of the diacetoxylation of alkenes using PhI(OAc)(2) as oxidant is presented. Systematic studies into the catalytic activity in the presence of proton-trapping and metal-complexing agents indicate that protons act as catalysts in the reaction. Using triflic acid as catalyst, the selectivity and reaction rate of the conversion is similar or superior to most efficient metal-based catalysts. Metal cations, such as Pd(II) and Cu(II), may interact with the oxidant in the initi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

5
87
0
4

Year Published

2011
2011
2018
2018

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 140 publications
(96 citation statements)
references
References 117 publications
5
87
0
4
Order By: Relevance
“…Alternatively, triflic acid might be generated in situ from the metal triflate. [23][24][25][26][27] We feel our work confirms Agosta and Wolff's long-standing hypothesis that alkene 6 is the key intermediate in the acid-promoted formation of the norcamphor 7. Our unified mechanistic proposal is shown in Scheme 3.…”
supporting
confidence: 80%
“…Alternatively, triflic acid might be generated in situ from the metal triflate. [23][24][25][26][27] We feel our work confirms Agosta and Wolff's long-standing hypothesis that alkene 6 is the key intermediate in the acid-promoted formation of the norcamphor 7. Our unified mechanistic proposal is shown in Scheme 3.…”
supporting
confidence: 80%
“…We complemented our study by treating PIDA with TMSOTf, commonly employed in iodine(III) activation. The reaction afforded PhI(OAc)(OTf) (76% yield), a species previously obtained by Stang and coworkers from PhI=O, and recently observed (MS, 1 H NMR) by the groups of Gade 12 and Dutton (Scheme 3). 20 While the compound is highly unstable, Ochiai, Miyamoto and co-workers did characterized its hydrolysis (aqua) product in the presence of [18]crown-6.…”
Section: Introductionmentioning
confidence: 59%
“…[14] Angesichts dieser Ergebnisse und in Anbetracht des grundlegenden Vorteils,d ass hypervalente Iod-Katalysatoren nicht zu einer Verunreinigung der Produkte durch Reste von Metallionen führen, ergänzt die beschriebene metallfreie Katalyse etablierte enantioselektive Verfahren mit Übergangsmetal-len. [18] [19] Dieser Zusammenhang weist auf zwei unterschiedliche Rollen der beiden Acetatgruppen in 2c hin:e ine bildet eine Wasserstoffbrücke und stellt so die stereochemische Umgebung bereit, während die zweite dissoziiert und damit den Iod(III)-Katalysatorzustand A erzeugt, der nicht mehr C 2 -symmetrisch, sondern C 1 -symmetrisch ist. Ein solcher Katalysatorzustand mit freier Koordinationsstelle am zentralen Iod(III)-Atom ermçglicht die erforderliche effiziente Differenzierung der prochiralen Seiten des ungesättigten Kohlenwasserstoffsubstrats innerhalb einer bevorzugten Koordination C.E in anschließender nucleophiler Angriff von Acetat auf die freie re-Seite erzeugt die S-konfigurierte benzylische C-O-Bindung in Intermediat B.E ine intramolekulare nucleophile Addition des Acetats regeneriert den Iod(I)-Katalysatorzustand 3c und liefert das Woodwardsche Dioxolan- Intermediat 6,[7i,20] das durch Wasseranlagerung die beiden regioisomeren Acetoxyalkohole 7 und 7' ' liefert, die beide im Rohprodukt detektiert werden.…”
Section: Methodsunclassified