Ferrites are a well-known class of ferrimagnetic materials. In the form of nanoparticles (NPs), they exhibit novel and fascinating properties, leading to an extremely wide variety of applications in electronics, biomedical and environmental fields. These applications result from nanoscale effects on physical properties, particularly magnetic properties. For applications in electronic devices, however, a high-density, consolidated body, with very fine grains is needed, in order to retain the nanoscale properties. To our knowledge, spark plasma sintering (SPS) is the only method permitting a full densification with final grain size in the nanometer range. In this review, we examine the SPS method as applied to ferrites and, in particular, the effects of SPS parameters on the final nanostructures obtained. Due to their technological impact, we also discuss the SPS fabrication of hybrid multiferroic nanostructures composed of a ferrite and a ferroelectric phase.