2006
DOI: 10.5802/aif.2210
|View full text |Cite
|
Sign up to set email alerts
|

The Local Nash problem on arc families of singularities

Abstract: Nash proved that every irreducible component of the space of arcs through a singularity corresponds to an exceptional divisor that appears on every resolution. He asked if the converse also holds: does every such exceptional divisor correspond to an arc family? We prove that the converse holds for toric singularities but fails in general.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
34
0
5

Year Published

2009
2009
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 27 publications
(39 citation statements)
references
References 30 publications
0
34
0
5
Order By: Relevance
“…This gives α ′ (0) ∈ E for some exceptional divisor E ⊂ Y . Taking α to correspond to the generic point of C j (see [IK03,Thm.2.15]), the divisor will be essential, so one can define Nash map for X, N X , from the set of good components into the set of essential divisors.…”
Section: The Next Results Is Well Known ([Ik03])mentioning
confidence: 99%
See 2 more Smart Citations
“…This gives α ′ (0) ∈ E for some exceptional divisor E ⊂ Y . Taking α to correspond to the generic point of C j (see [IK03,Thm.2.15]), the divisor will be essential, so one can define Nash map for X, N X , from the set of good components into the set of essential divisors.…”
Section: The Next Results Is Well Known ([Ik03])mentioning
confidence: 99%
“…A resolution of singularities of X is a proper birational morphism f : Y → X such that Y is nonsingular and f is an isomorphism on Y \ f −1 (Sing(X)). The largest part of this section is based on [IK03] and [Ish04], which could be consulted for more motivation and details.…”
Section: Nash Problemmentioning
confidence: 99%
See 1 more Smart Citation
“…Étant donné explicitement une variété V et une désingularisation π, on remarque que déterminer si une composante irréductible de la fibre exceptionnelle de π est ou non un diviseur essentiel reste un problème difficile. L'approche de Nash est donc très De nombreux mathématiciens, qu'on ne peut pas tous citer ici, ont apporté de nouvelles contributions originales à l'étude du problème de Nash, surtout dans le cas de variétés de dimension 2 et 3 (voir par exemple [LJ80], [Reg95], [GSLJ97], [LJRL99], [IK03], [Ish05], [Ish06], [PPP06], [GP07], [Mor08], [Plé08], [PPP08], [Pet09], [LA11], [FdB12], [PS12], [dFD14]). …”
Section: Introductionunclassified
“…Dans l'article [IK03] de l'année 2003, les auteurs ont découvert le premier exemple d'une variété V telle que l'application de Nash N V n'est pas bijective ; cette variété est une hypersurface de A 5 K ayant une unique singularité isolée. Les exemples de variétés de dimension trois où l'application de Nash n'est pas bijective ont apparu au cours de l'année 2012, (voir les articles [dF13] et [Kol12]) ; ces exemples sont des hypersurfaces de A 4 K ayant une unique singularité isolée.…”
Section: Introductionunclassified