Previous studies have demonstrated that there is a disproportionate increase in connective tissue in right ventricular myocardium subjected to pressure-overload hypertrophy associated with depressed cardiac contractility. While the myocardium is primarily responsive to load, the aim of the present study was to determine whether catecholamines also modulate the response of myocardial tissue components and cardiocyte organelles in pressure-overload-induced cardiac hypertrophy. Four experimental groups of cats were examined: a sham-operated control group, a group which had their pulmonary arteries banded in order to induce a pressure overload, a group which had been subjected to the same pressure overload, but in addition had beta-adrenoceptor blockade produced prior to and during the pressure overloading, and a group which had been subjected to the same pressure overload, but in addition had alpha-adrenoceptor blockade produced prior to and maintained during the pressure overloading. As in our previous study, there was a significant and equivalent degree of right ventricular hypertrophy in all experimental groups with pressure overload when assessed either as the ratio of right ventricular weight to body weight or as cardiocyte cross-sectional area. At the light microscopic level, the disproportionate increase in the volume density of myocardial connective tissue seen in banded animals was completely prevented by either alpha- or beta-adrenoceptor blockade. At the electron microscopic level, there was a reduction in the mitochondrial and myofibrillar volume fractions following beta-adrenoceptor blockade. The results of this study provide evidence for a modulatory role of catecholamines in the control of myocardial connective-tissue proliferation in pressure-overload-induced cardiac hypertrophy. There is also evidence to support the role of the adrenergic nervous system in regulating cardiocyte subcellular organelles, independent of the regulation of cardiocyte size.