2008
DOI: 10.1051/forest:2008035
|View full text |Cite
|
Sign up to set email alerts
|

The effect of brown-rot decay on water adsorption and chemical composition of Scots pine heartwood

Abstract: -• The effect of brown-rot (Coniophora puteana) decay on the water adsorption capacity and concentration of extractives of Scots pine (Pinus sylvestris L.) heartwood were studied by comparing corresponding properties of decayed and undecayed wood samples.• The samples derived from 39 felled trees having a large between-tree variation in the extractive concentrations, and subsequently in the mass loss in the decay test. The water adsorption capacity, expressed as equilibrium moisture content (EMC), was measured… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
20
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(26 citation statements)
references
References 25 publications
1
20
0
2
Order By: Relevance
“…Wood decomposition may be nutritionally beneficial to mosses; compared to soil or undecayed wood, rotting wood often has greater availability of sugars (Karppanen et al . ), base cations (Gruba & Zwydak ), nitrogen (Fukasawa, Osono & Takeda ), and phosphorus (Wiklund ), all of which can increase the growth of some moss species at observed concentrations (Sargent ; Wiklund ; Duckett et al . ).…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Wood decomposition may be nutritionally beneficial to mosses; compared to soil or undecayed wood, rotting wood often has greater availability of sugars (Karppanen et al . ), base cations (Gruba & Zwydak ), nitrogen (Fukasawa, Osono & Takeda ), and phosphorus (Wiklund ), all of which can increase the growth of some moss species at observed concentrations (Sargent ; Wiklund ; Duckett et al . ).…”
Section: Introductionmentioning
confidence: 99%
“…Several mechanisms have been proposed to explain the association of moss diversity with rotting CWD. Wood decomposition may be nutritionally beneficial to mosses; compared to soil or undecayed wood, rotting wood often has greater availability of sugars (Karppanen et al 2008), base cations (Gruba & Zwydak 2010), nitrogen (Fukasawa, Osono & Takeda 2009), and phosphorus (Wiklund 2003), all of which can increase the growth of some moss species at observed concentrations (Sargent 1988;Wiklund 2003;Duckett et al 2004). Others have speculated that CWD may act as a moisture capacitor (sensu Proctor & Tuba 2002), by absorbing water during precipitation events, and slowly releasing it during dry periods, thereby extending the duration of humid conditions and increasing the growth of species living on the surface (S€ oderstr€ om 1988a; Rambo & Muir 1998;Jansov a & Sold an 2006;Botting & DeLong 2009).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Los hongos responsables de pudrición castaña como L. sulphureus degradan holocelulosa; la lignina sólo es parcialmente oxidada (Blanchette, 1995;Schwarze, 2007). La intensa despolimerización de la celulosa y de las hemicelulosas determina en la madera degradada aumentos relativos en los porcentajes de lignina y extraíbles, estos últimos también influenciados por los carbohidratos fúngicos (Kirk & Highley, 1973;Pandey & Pitman, 2003;Karppanen et al, 2008). Los hongos causantes de pudrición castaña despolimerizan selectivamente la holocelulosa rápidamente desde los estadios iniciales del proceso a velocidad mayor a la que los productos resultantes de su degradación pueden ser metabolizados (Zabel & Morrell, 1992;Schmidt, 2006).…”
Section: Discusión Y Conclusionesunclassified
“…Novelty is also presented regarding commercially available equipment by showing the advantages of interpreting the recorded migration times and the correlation of multiple wavelengths in identifying compounds. Stilbenes, pinocembrin (Willför et al 2003b), total phenolics (Willför et al 2003a;Venäläinen et al 2004;Harju et al 2003;Hovelstad et al 2006;Kähkönen et al 1999), total pinosylvins (Venäläinen et al 2004;Hovelstad et al 2006;Lindberg et al 2004;Pietarinen et al 2006), pinosylvin, PMME, PDME3 (Karppanen et al 2008;Valentín et al 2010), lignans (Willför et al 2003a;Pietarinen et al 2006), oligolignans, 3,4-dihydroxybenzoic acid, catechin, vanillic acid (Valentín et al 2010) Bark Total phenolics (Kähkönen et al 1999;Stolter et al 2009;Kanerva et al 2008), apigenin-7-glucoside, catechin, catechin derivative, gallocatechin, dicoumarylastragalin, quercitrin, dicoumarylisoquercitrin derivatives (Stolter et al 2009;Roitto et al 2008), mono-coumaroylisoquercitrin derivatives, quercetin-3-galactoside, kempferol-3-glucoside, taxifolinmonoglycoside (Stolter et al 2009), benzoic acid glycoside (Stolter et al 2009;Kanerva et al 2008;Roitto et al 2008), condensed tannins, myricetin-3-galactoside, hyperin, neolignans (Roitto et al 2008) Needles and twigs Taxifolin, taxifolin-3 0 -glucoside, quercetin, quercetin-3-glucoside, quercetin-3 0 -glucoside (Oleszek et al 2002), total phenolics (Willför et al 2003a;Malá et al 2011Zeneli et al 2006, astringin (Hammerbacher et al 2011;Zeneli et al 2006), isorhapontin, piceid (polydatin), catechin (Zeneli et al 2006), lignans …”
Section: Introductionmentioning
confidence: 98%