The challenges of water, waste, and climate change in cities are overwhelming and underpin the importance of overcoming governance issues impeding adaptation. These Bgovernance challenges^typically have fragmented scopes, viewpoints, and responsibilities. As there are many causes leading to this uncertainty and disagreement, there is no single best approach to solve these governance challenges. In fact, what is necessary is iterative and requires governance capacity to find dynamic long-term solutions that are supported by flexible interim targets, so as to anticipate emerging barriers and changing situations. The literature contains a plethora of governance gaps, barriers, and capacities, which sometimes overlap, are contradictory and case-specific, and reflect disciplinary scopes. We argue that a balanced set of well-developed conditions is needed, to obtain the governance capacity that enables effective change. Therefore, we aim to obtain deeper understanding of the key conditions determining the urban water governance capacity, by developing an integrated empirical-based approach that enables consistent city comparisons and facilitates decisionmaking. We propose a governance capacity framework focusing on five governance challenges: 1) water scarcity, 2) flood risk, 3) wastewater treatment, 4) solid waste treatment and 5) urban heat islands. Nine governance conditions, each with three indicators, are identified and empirically assessed using a Likert-type scoring method. The framework is illustrated by a case study on Amsterdam, the Netherlands. We conclude our approach shows great potential to improve our understanding of the key conditions determining the governance capacity to find solutions to the urban challenges of water, waste, and climate change.