The temperature dependence of amorphization dose for zircon under 1.5 MeV Kr ion irradiation has been investigated using the HVEM-Tandem Facility at Argonne National Laboratory. Three regimes were observed in the amorphization dose-temperature curve. In the first regime (15 to 300 K), the critical amorphization dose increased from 3.06 to 4.5 ions/nm2. In the second regime (300 to 473 K), there is little change in the amorphization dose. In the third regime (> 473 K), the amorphization dose increased exponentially to 8.3 ions/nm2 at 913 K. This temperature dependence of amorphization dose can be described by two processes with different activation energies (0.018 and 0.31 eV respectively) which are attributed to close pair recombination in the cascades at low temperatures and radiation-enhanced epitaxial recrystallization at higher temperatures. The upper temperature limit for amorphization of zircon is estimated to be 1100 K. The ion-mass dependence of the amorphization dose (in dpa) has also been discussed in terms of the energy to recoils based on data obtained from He, Ne, Ar, Kr, Xe irradiations and a 238Pu-doped sample.