Multilayered van der Waals (vdW) materials have attracted increasing interest because of the manipulability of their superior optical, electrical, thermal, and mechanical properties. A mass-spring model (MSM) for elastic wave propagation in multilayered vdW metamaterials is reported in this paper. Molecular dynamics (MD) simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials. The results show that the graphene/MoS2 metamaterials have an elastic wave bandgap in the terahertz range. The MSM for the multilayered vdW metamaterials is proposed, and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials. The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional (2D) materials. The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.