2009
DOI: 10.1007/s10958-009-9742-2
|View full text |Cite
|
Sign up to set email alerts
|

Symbol algebras and cyclicity of algebras after a scalar extension

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0
4

Year Published

2009
2009
2015
2015

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(7 citation statements)
references
References 15 publications
0
3
0
4
Order By: Relevance
“…Replacing F by a field extension over which A has index exactly p 2 and replacing A by a Brauer equivalent division algebra, we may assume that A is a division algebra of degree p 2 . Moreover, an application of the index reduction formula shows that we may assume that A is decomposable, i.e., A is a tensor product of two algebras of degree p (see [19,Theorem 1.20]). …”
Section: Not Surjective Then Suslin's Conjecture Holds For Amentioning
confidence: 99%
“…Replacing F by a field extension over which A has index exactly p 2 and replacing A by a Brauer equivalent division algebra, we may assume that A is a division algebra of degree p 2 . Moreover, an application of the index reduction formula shows that we may assume that A is decomposable, i.e., A is a tensor product of two algebras of degree p (see [19,Theorem 1.20]). …”
Section: Not Surjective Then Suslin's Conjecture Holds For Amentioning
confidence: 99%
“…Récemment Rehman-Tikhonov-Yanchevskiȋ ont en plus démontré qu'il suffit de vérifier la conjecture de Suslin pour des algèbresà division cycliques. Il suffit même de démontrer la conjecture pour une classe d'algèbresà division cycliquesélémentaires (des produits tensoriels de deux algèbres cycliques de Dickson) [RTY,.…”
Section: Conjecture De Suslinunclassified
“…Suslin a conjecturé la réciproque [Sus1]. Récemment, Merkurjev a démontré que cette conjecture vaut si 4 | ind k (A) [Mer2], et Rehman-Tikhonov-Yanchevskiȋ ont démontré qu'il suffit de démontrer la conjecture pour des algèbresà division cycliques [RTY,Thm. 0.19].…”
Section: Introductionunclassified
“…This would give a sufficient answer to the question of Tannaka and Artin. Merkurjev proved it is true when 4 | ind k (A) [Mer3]; and Rehmann-Tikhonov-Yanchevskiȋ proved it is sufficient to prove the conjecture for the tensor product of two symbol algebras [RTY,Thm. 0.19].…”
Section: Introductionmentioning
confidence: 99%