2010
DOI: 10.1017/is010005019jkt117
|View full text |Cite
|
Sign up to set email alerts
|

L'invariant de Suslin en caractéristique positive

Abstract: RÉSUMÉPour une k-algèbre simple centrale A d'indice inversible dans k, Suslin a défini un invariant cohomologique de SK1 (A) ‘Sus2’. Dans ce texte, nous généralisons cet invariant à toute k-algèbre simple centrale par un relèvement de la caractéristique positive à la caractéristique 0. Pour pouvoir définir cet invariant, on a besoin des groupes de cohomologie des différentielles logarithmiques de Kato [Kat1].

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
6
0

Year Published

2010
2010
2011
2011

Publication Types

Select...
1
1

Relationship

2
0

Authors

Journals

citations
Cited by 2 publications
(6 citation statements)
references
References 39 publications
0
6
0
Order By: Relevance
“…This injection also continues to the relative cohomology groups; i.e. there exists an injection H i+1 n,A ⊗r (k) → H i+1 n,B ⊗r K (K) for any integer r and A and B as above [Wou,Prop. 4.10].…”
Section: Generalising Invariantsmentioning
confidence: 99%
See 4 more Smart Citations
“…This injection also continues to the relative cohomology groups; i.e. there exists an injection H i+1 n,A ⊗r (k) → H i+1 n,B ⊗r K (K) for any integer r and A and B as above [Wou,Prop. 4.10].…”
Section: Generalising Invariantsmentioning
confidence: 99%
“…To obtain a cycle module we have to tweak it a little bit. For this paper we do not need a cycle module, so we rather work with this functor of graded groups to ease the discussion (see [Wou,§4.1 (d)] for more details -see also Remark 2.6 infra).…”
Section: Generalising Invariantsmentioning
confidence: 99%
See 3 more Smart Citations