2009
DOI: 10.1063/1.3210785
|View full text |Cite
|
Sign up to set email alerts
|

Submicron ionography of nanostructures using a femtosecond-laser-driven-cluster-based source

Abstract: An intense isotropic source of multicharged carbon and oxygen ions with energy above 300 keV and particle number >108 per shot was obtained by femtosecond Ti:Sa laser irradiation of submicron clusters. The source was employed for high-contrast contact ionography images with 600 nm spatial resolution. A variation in object thickness of 100 nm was well resolved for both Zr and polymer foils.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0
2

Year Published

2013
2013
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 38 publications
(10 citation statements)
references
References 10 publications
0
8
0
2
Order By: Relevance
“…Experiments aiming to use protons as a shock diagnostic in laser-irradiated dense targets have also been carried out [57], although the aforementioned scattering degradation effects have limited these experiments to low-density foam targets at currently available proton energies. Projection radiography of static objects (where high-resolution images are imprinted on a suitable detector by either scattering or stopping processes) has also been explored in a number of experiments, employing point projection [54,58] or contact radiography [59,60] schemes. The most successful applications to date of proton backlighting are related to implementations of this technique aimed to detect electric and magnetic fields in plasmas [55], via the deflections undergone by the protons.…”
Section: Proton Radiography/deflectometrymentioning
confidence: 99%
“…Experiments aiming to use protons as a shock diagnostic in laser-irradiated dense targets have also been carried out [57], although the aforementioned scattering degradation effects have limited these experiments to low-density foam targets at currently available proton energies. Projection radiography of static objects (where high-resolution images are imprinted on a suitable detector by either scattering or stopping processes) has also been explored in a number of experiments, employing point projection [54,58] or contact radiography [59,60] schemes. The most successful applications to date of proton backlighting are related to implementations of this technique aimed to detect electric and magnetic fields in plasmas [55], via the deflections undergone by the protons.…”
Section: Proton Radiography/deflectometrymentioning
confidence: 99%
“…Наиболее перспективным сейчас представляется использование фемтосекундных лазерных им-пульсов в сочетании с кластерными мишенями [13], обеспечивающими более эффективное поглощение энергии лазерного импульса по срав-нению со сплошными мишенями, что позволяет значительно понизить требования к параметрам лазерных установок, используемых для гене-рации быстрых ионов.…”
Section: …10 21unclassified
“…Первым поколением источников аттосекундных импульсов счи-таются источники, основанные на генерации высоких гармоник при взаимодействии лазерных импульсов интенсивностью ~10 13 Вт/см 2 с газовыми струями [24]. В связи с увеличением доступности высокоин-тенсивных лазерных систем развиваются исследования генерации гармоник при взаимодействии лазерных импульсов с твердотельными мишенями для создания второго поколения источников аттосекундно-го излучения с использованием сверхкоротких сильносфокусирован-ных импульсов, лазерных импульсов со специально подобранной переменной поляризацией, селективной фильтрацией генерируемого излучения [25].…”
Section: …10 21unclassified
“…Laser plasma acceleration (LPA) with a accelerating gradient exceeding TV/m [1] has become a strong candidate for building future compact radiation sources [2] and high-energy particle accelerators [3,4]. The applications of laser-accelerated ion beam , such as cancer treatment [5,6], imaging [7], and warm-dense-matter generation [8], have received extensive attention. Under the current technical conditions of lasers and targets, Target Normal Sheath Acceleration (TNSA) [9] is the main direction to be considered for laser ion acceleration.…”
Section: Introductionmentioning
confidence: 99%