Gap junctional intercellular communication is a function that plays an important role in maintaining cell and tissue homeostasis and in regulating cell growth, development, and differentiation. Change in this function when contacting fibroblasts with various polymer microspheres was estimated using the metabolic cooperation assay system. When the cells were in contact with the microspheres after their adhesion onto a substrate, the function did not alter. However, when they were in contact with precoated microspheres on test dishes, the function was inhibited as the quantity of microspheres increased. Moreover, the inhibition level increased as the diameters of polyethylene and polystyrene microspheres decreased. However, no inhibition was observed if precoated microspheres were composed from poly(L-lactic acid). These findings suggest that the size and the material of microspheres, and how cells recognize the microspheres, are factors affecting cell function of gap junctional intercellular communication. Therefore, estimating this function may provide valuable information about the biocompatibility of many kinds of materials even in the form of particles.