Polyclonal and monoclonal antibodies specific for histones as well as sera directed against synthetic peptides of histones were used to probe the topography of chromatin subunits. In native chromatin, the regions corresponding to residues 130 -135 of H3 and 6-18 of H2B were found to be exposed and able to interact with antibodies whereas the regions 26-35 and 36-43 of H2B and 80-89 and 85-102 of H4 were not. In vitro phosphorylation of H3 and H5 in native chromatin or of H3 in H1/H5-depleted chromatin led to a marked drop in the binding of antibodies specific for residues 130-135 of H3 and 6-18 of H2B. Phosphorylation of H1/H5-depleted chromatin also altered the degree of exposure of certain H2A epitopes but it did not affect the surface accessibility of residues 1-11 of H2B.