Improved endothelialization without platelet adhesion is essential to enhance the long-term patency of synthetic vascular grafts and other blood-contacting devices. We have developed a dually modified polyurethaneurea by incorporating endothelial cell adhesive YIGSR peptide sequences as chain extenders and nonthrombogenic PEG as a soft segment (PUUYIGSR-PEG) in the polymer backbone. PUUYIGSR-PEG was successfully synthesized and characterized by proton NMR, FTIR, GPC, DSC, ESCA, and contact angle measurement. Despite having similar molecular weight, the peptide/PEG-modified polyurethaneurea (PUUYIGSR-PEG) showed superior mechanical properties compared to the control PEGmodified polyurethaneurea (PUUPPD-PEG). Virtually no platelet adhesion was observed on PUUYIGSR-PEG, while endothelial cell adhesion, spreading, and migration were significantly greater on PUUYIGSR-PEG compared to PUUPPD-PEG. Thus, this bioactive polymer may be an appropriate biomaterial for small diameter vascular grafts.