1984
DOI: 10.1007/bf02648575
|View full text |Cite
|
Sign up to set email alerts
|

Structure and properties of rapidly solidified dispersion-strengthened titanium alloys: Part I. Characterization of dispersoid distribution, structure, and chemistry

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
23
1
2

Year Published

1987
1987
2019
2019

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 95 publications
(28 citation statements)
references
References 6 publications
1
23
1
2
Order By: Relevance
“…[9] Similarly, the addition of Y, Er, Nd, Dy, Gd, and La to commercial-purity Ti produces a uniform distribution of fine incoherent dispersoids that significantly refine the microstructure by inhibiting grain boundary migration during recrystallization and restricting grain growth at elevated temperature. [7][8][9][10][11] Early investigations gave out various crystal structures of the rare earth-contained dispersoids in the titanium alloys such as Er 2 O 3 , Al 3 La, La, La 2 Sn, Y 5 Sn 3 , and Ti-Re-O-C et al [4,8,[12][13][14][15] In our present investigations, however, the observations are very different from the preceding results.…”
Section: Introductioncontrasting
confidence: 81%
See 1 more Smart Citation
“…[9] Similarly, the addition of Y, Er, Nd, Dy, Gd, and La to commercial-purity Ti produces a uniform distribution of fine incoherent dispersoids that significantly refine the microstructure by inhibiting grain boundary migration during recrystallization and restricting grain growth at elevated temperature. [7][8][9][10][11] Early investigations gave out various crystal structures of the rare earth-contained dispersoids in the titanium alloys such as Er 2 O 3 , Al 3 La, La, La 2 Sn, Y 5 Sn 3 , and Ti-Re-O-C et al [4,8,[12][13][14][15] In our present investigations, however, the observations are very different from the preceding results.…”
Section: Introductioncontrasting
confidence: 81%
“…), and an actinide element (Th). [7][8][9][10][11][12][13][14][15] By and large, all these elements have negligible solubility in titanium at room temperature. Furthermore, these elements form stable dispersoids in the titanium matrix, providing dispersion strengthening in the elevated temperature.…”
Section: Introductionmentioning
confidence: 99%
“…Увеличение содержания диспрозия с 0,1 до 1 ат.% приводит к изменению морфологии микрострук-туры и фазового состава сплава (рис. [10,15,17].…”
Section: результаты и обсуждениеunclassified
“…The results of EDX measurements obtained from the areas marked in Fig. 3 [10,15,17] ка была нацелена, прежде всего, на совершенствование микроструктуры: получение более равновесной микро-структуры пластинчатого или пластинчато-глобулярно-го типа, сохранение малого размера колоний, увеличение толщины γ / α 2 пластин, а также на растворение β(В2)-фазы. Видно, что термическая обработка во всех трех сплавах приводит к формированию преимущественно пластинчатой микроструктуры (рис.…”
Section: результаты и обсуждениеunclassified
“…[5][6][7][8][9] Rare earth elements are also considered favorable in high-temperature titanium alloys because they can adsorb the oxygen in the matrix, and the dispersed rare earth oxide particles can further strengthen the matrix alloys. [10] Creep behavior is highly important for the application of TMCs in aerospace systems. Ma et al [11] investigated the steady-state creep behavior of a TiC particle-reinforced Ti-6Al-4V composite at 823 to 923 K; the creep data covered about five orders of creep strain rates.…”
Section: Introductionmentioning
confidence: 99%