An exchanged-biased anisotropic magnetoresistance bridge sensor for low currents measurement is designed and implemented. The sensor has a simple construction (single mask) and is based on results from micromagnetic simulations. For increasing the sensitivity of the sensor, the magnetic field generated by the measurement current passing through the printed circuit board trace is determined through an analytical method and, for comparative analysis, finite elements method simulations are used. The sensor performance is experimentally tested with a demonstrator chip. Four case studies are considered in the analytical method: neglecting the thickness of the trace, dividing the thickness of the trace in several layers, and assuming a finite or very long conductive trace. Additionally, the influence of several adjacent traces in the sensor area is evaluated. The study shows that the analytical design method can be used for optimizing the geometric selectivity of a non-contacting magnetoresistive bridge sensor setup in single trace, differential, and multi-trace (planar coil) configurations. Further, the results can be applied for developing highly performant magnetoresistance sensors and optimizations for low field detection, small dimensions, and low costs.