2015
DOI: 10.1016/j.matchar.2015.02.020
|View full text |Cite
|
Sign up to set email alerts
|

Structural characterization of “carbide-free” bainite in a Fe–0.2C–1.5Si–2.5Mn steel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
25
0
3

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 50 publications
(29 citation statements)
references
References 23 publications
1
25
0
3
Order By: Relevance
“…The applied process is schematically shown in Figure 4. Given that there exists the possibility of forming bainite by isothermal transformation at temperatures below the Ms [26][27][28][29][30][31][32][33], this is also becoming an attractive alternative, not only to accelerate the bainitic transformation, but also to obtain a finer microstructure in later stages of transformation. Figure 5 shows an example for 0.15 and 0.28 C steels transformed to bainite below the Ms; the author reports a decrease in the bainitic ferrite plate thickness of almost 40 nm in both cases, the final plate thickness being around 140-200 nm [26].…”
Section: Heat Treatment Variationsmentioning
confidence: 99%
“…The applied process is schematically shown in Figure 4. Given that there exists the possibility of forming bainite by isothermal transformation at temperatures below the Ms [26][27][28][29][30][31][32][33], this is also becoming an attractive alternative, not only to accelerate the bainitic transformation, but also to obtain a finer microstructure in later stages of transformation. Figure 5 shows an example for 0.15 and 0.28 C steels transformed to bainite below the Ms; the author reports a decrease in the bainitic ferrite plate thickness of almost 40 nm in both cases, the final plate thickness being around 140-200 nm [26].…”
Section: Heat Treatment Variationsmentioning
confidence: 99%
“…This lower C concentration and, therefore, the lower thermodynamic stability explains the transformation of these areas to mainly C‐rich martensite upon cooling to room temperature. The outer regions of the M‐A islands remain preferentially partly austenitic, reflecting the C enrichment at the bainitic ferrite‐austenite interface.…”
Section: Resultsmentioning
confidence: 99%
“…For light optical microscopy, metallographic samples were etched with Nital and the anodic surface layer etching LePera with the experimental details given in ref . The austenite phase fraction was determined magnetically by the Joch‐Isthmus method…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Assim, o carbono será responsável por estabilizar a austenita retida e impedir quaisquer outras decomposições, assim como ocorre nos aços T&P[2] e que vai de encontro com à convencional têmpera com revenimento (T&R) em que, para a estabilização da microestrutura final, há um incentivo para que ocorra a decomposição da austenita não transformada. Dessa forma, é possível, por meio dos aços CFB, a obtenção de microestruturas muito refinadas formadas por ripas bainíticas com austenita retida na forma de filmes finos[71], que proporcionam propriedades muito atrativas[2][26][79][98]. Essa microestrutura é consequência da composição química que permite o aparecimento da morfologia supracitada, em que a bainita será responsável pela resistência e a austenita retida pela ductilidade: frear a propagação de trincas, aumentando a tenacidade; sofrer o efeito TRIP e aumentar a taxa de encruamento, o alongamento e até mesmo a formabilidade desses aços, como mencionado na seção 3.1.…”
unclassified