2010
DOI: 10.1134/s1064562410050066
|View full text |Cite
|
Sign up to set email alerts
|

Statistical modeling of inhomogeneous random functions on the basis of Poisson point fields

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0
1

Year Published

2011
2011
2022
2022

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 6 publications
(14 citation statements)
references
References 2 publications
0
13
0
1
Order By: Relevance
“…Below, new representations (compared to [2,4]) of correlation functions of grid Poisson fields are con structed and their comparative analysis is presented. Since the scale can be suitably changed with the cor responding change in λ, we assume for presentational simplicity that d = 1; i.e., L l is the unit coordinate hypercube.…”
Section: Correlation Functions Of Poisson Grid Modelsmentioning
confidence: 99%
See 3 more Smart Citations
“…Below, new representations (compared to [2,4]) of correlation functions of grid Poisson fields are con structed and their comparative analysis is presented. Since the scale can be suitably changed with the cor responding change in λ, we assume for presentational simplicity that d = 1; i.e., L l is the unit coordinate hypercube.…”
Section: Correlation Functions Of Poisson Grid Modelsmentioning
confidence: 99%
“…The space T is equipped with the measure τ defines as the product of the Lebesgue measure in ‫ޒ‬ and the Hausdorff measure Ᏼ l -1 on S (l) ("area" on the sphere); i.e., dτ = dpdᏴ (l -1) = dpds. Consider a Poisson point field (see, e.g., [6,4]) in T with a parameter λ. Identifying each point of this field with a hyperplane as described above yields the required Poisson field Γ of random hyperplanes. It can only be said a priori that the distribution of this field is invariant under rotations about the fixed origin.…”
Section: Poisson Mosaic Random Fieldmentioning
confidence: 99%
See 2 more Smart Citations
“…При применении методики приближенного моделирования траекторий с обрывами и ветвлениями на основе метода «максимального сечения» [9,10], или метода прореживания пуассоновского потока, моменты времени τ k , в которые могут реализоваться события пуассо-новского потока (обрывы или ветвления), определяются с помощью моделирования случайных величин Δτ k , имеющих показательное распределение с параметром μ * . Величина μ * определяет-ся условием |μ(t)| ≤ μ * , t[t 0 , T], т. е. τ 0 = t 0 , τ k+1 = τ k + Δτ k , k = 1, 2, … Напомним, что необходимо получить реализацию случайной величины α, имеющей рав-номерное распределение на интервале (0, 1), и проверить условие α ≤ |μ(τ k )| / μ * , где μ(t) = μ(t, X(t), Z(t)) задает значения функции μ(t, x, z) на траектории случайного процесса X(t) с учетом измерений Z(t) оцениваемой траектории.…”
Section: траектории движения частицы определяются заданными вектором unclassified