2010
DOI: 10.1021/jp1003825
|View full text |Cite
|
Sign up to set email alerts
|

Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement

Abstract: A facile approach to maintain the periodic mesostructure of cylindrical pores in polymer-resin and carbon films after thermal template removal is explored through the reactive coassembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock copolymer Pluronic F127. Without silica, a low porosity, disordered film is formed after pyrolysis despite the presence of an ordered mesostructure prior to template removal. However for silica concentration greater than 25 wt %, pyrolysis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
23
0
1

Year Published

2011
2011
2020
2020

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 20 publications
(24 citation statements)
references
References 38 publications
(98 reference statements)
0
23
0
1
Order By: Relevance
“…The inclusion of silica in the material provides for mechanical reinforcement of the framework [25,32] and its removal after carbonization introduces a significant micropore population. The influence of the TEOS:resol (w/w) ratio (2, 2.5, and 3) on the final OMC mesostructure was investigated at a fixed mass ratio of ethanol/F127/resol of 5/1.6/1, which correspond to 18, 22 and 25 wt% TEOS in solution.…”
Section: Impact Of Teos Loading On Pore Characteristicsmentioning
confidence: 99%
See 3 more Smart Citations
“…The inclusion of silica in the material provides for mechanical reinforcement of the framework [25,32] and its removal after carbonization introduces a significant micropore population. The influence of the TEOS:resol (w/w) ratio (2, 2.5, and 3) on the final OMC mesostructure was investigated at a fixed mass ratio of ethanol/F127/resol of 5/1.6/1, which correspond to 18, 22 and 25 wt% TEOS in solution.…”
Section: Impact Of Teos Loading On Pore Characteristicsmentioning
confidence: 99%
“…With tri-constituent self assembly, the condensation of silica oligomers drives self assembly during solvent evaporation [32], unlike the limited ordering that arises for resol-Pluronic alone [34][35][36]. Despite the initial development of the mesostructure on solvent evaporation, the crosslinking temperature impacts the ultimate ordered structure of the OMCs.…”
Section: Role Of Crosslinking Temperature On Porous Structurementioning
confidence: 99%
See 2 more Smart Citations
“…1 Formation of RF-SiO 2 aerogel and its transformation to SiC aerogel [12] 第 5 期 何 飞, 等: 具有气凝胶结构特征的 C/SiO 2 和 C/SiC 复合材料研究进展 451 基于上述考虑, 当采用正硅酸乙酯(tetraethoxysilane, TEOS)为先驱体水解得到 SiO 2 溶胶, 加入到事先配 制的 RF 溶胶中, 可以获得均匀的混合溶胶。 混合溶 胶经凝胶、干燥后获得 RF/SiO 2 气凝胶, 随后在惰性 气体保护下热解得到 C/SiO 2 气凝胶材料 [11][12][19][20] 。 TEOS 加入 RF 溶胶能明显缩短体系的凝胶时间, 但 是随着 TEOS 含量的逐渐增加, 气凝胶孔径逐渐减 小, 孔内毛细张力增大, 气凝胶易于开裂 [21] 。Chen 等 [22][23] 针对该混合溶胶体系, 采用一步酸催化快速 合成法(one-pot acid-catalyzed rapid synthesis route) 制备了 RF/SiO 2 气凝胶。在该方法中, HCl 取代 Na 2 CO 3 作为酸性催化剂, 可以提高芳香族链亲电 取代(electrophilic aromatic substitution)的活性, 从 而 加 速 芳 香 族 链 之 间 亚 甲 基 桥 联 的 形 成 ; 乙 腈 (CH 3 [22][24,27] 。在该溶胶体系中, APTES 除了作为硅源先 驱体参与水解缩聚反应形成 Si-O-Si 网络结构以外, 还可作为"内部催化剂(internal catalyst)"促进 R 和 F 之间的缩聚反应。这是由于 APTES 中氨基的水合 作用(hydration of amino groups)在 APTES 水解产物 中形成了环状的分子间氢键, 为反应提供了良好的 通路, 从而加速溶胶-凝胶过程 [27] 。RF/SiO 2 气凝胶 经高温烧结转变成 C/SiO 2 气凝胶后(高 APTES 含量 时复合材料的骨架主要由 SiO 2 构成; 低 APTES 含 量时骨架则主要由 C 构成 [15] ), 经 1500℃处理转变 为 SiC 气凝胶后, 在 650℃空气环境下具有良好的 抗氧化能力 [25] 。以 APTES 和 TEOS 作为混合硅源 先驱体合成的 RF/SiO 2 气凝胶, APTES 在促进溶胶-凝胶反应过程的同时, 还增大了样品的密度。经热 处理后, 由于 APTES 中氨丙基(aminopropyl)基团的 存在, 引起 RF/SiO 2 气凝胶有更多的质量损失和体 积收缩 [26] 。APTES 中的 Si-C 键加速了碳热还原反 应的进行, 导致 α-SiC 的形成 [26] 。除此以外, 若用 NaOH 溶液将 C/SiO 2 气凝胶中的 SiO 2 蚀刻去掉, 则 可获得高比表面积的碳气凝胶 [28] 。 当热解温度提高至 1200~1500℃, RF/SiO 2 气凝 胶或 C/SiO 2 气凝胶经碳热还原反应转变为 SiC 或 SiC/C 气凝胶, 总的反应方程如式(1)所示 [12,20] : SiO 2 (s)+3C(s)→SiC(s)+2CO(g) (1) 在这一过程中, SiC 首先在先驱体表面形核(nuclei), 随后长大成纳米晶须(nanowhiskers)。其间相互贯穿 孔的存在为气体产物(如 SiO、CO 和 CO 2 )的扩散提 供了通路, 加速了这一反应的进行 [12] 。C 与 SiO 2 的 比例和 C/SiO 2 复合材料的致密度是影响 SiC 反应动 力学和最终 SiC 微观结构的重要因素。图 3 给出了 不同结构 SiC 的形成过程示意图 [28] [28] 。除此以外, 采用低温镁热反应 (low-temperature magnesiothermic reaction)可使 C/SiO 2 材料在 700℃的低温下转变成 SiC [23] 。通过 Fig. 3 Schematic illustration of SiC formation [28] 高硬度、好的抗热震能力、高热导和高稳定性、低 膨胀系数和大的带隙, 可用于增强相、催化剂、高 能和高频电子材料、光电材料、抗辐射材料、氢分 离膜载体和吸波器件等 [12] 。 采用共聚法制备 C/SiO 2 和 C/SiC 气凝胶, 除了 以 R 和 F 的聚合物为先驱体之外, 碳的来源还可能是 间苯三酚-F(Phloroglucinol-Formaldehyde, PF) [29] 、可 溶性酚醛树脂(resol) [30] 、苯酚-R-F(phenol-...…”
Section: 共聚法unclassified