2021
DOI: 10.1103/physrevb.103.024432
|View full text |Cite
|
Sign up to set email alerts
|

Spin transport in different oxide phases of copper

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 30 publications
0
2
0
1
Order By: Relevance
“…The open shell nature of CuO enables good spin conductivity, but the filled 3d orbital of Cu2O makes it a spin insulator. 11 Mixing the CuO and Cu2O stoichiometries, or increasing defect and vacancy sites, enables its magnetic moment to be systematically tuned for spintronic applications. 12 The photodynamics measured in bulk copper oxides also show significant differences.…”
Section: Introductionmentioning
confidence: 99%
“…The open shell nature of CuO enables good spin conductivity, but the filled 3d orbital of Cu2O makes it a spin insulator. 11 Mixing the CuO and Cu2O stoichiometries, or increasing defect and vacancy sites, enables its magnetic moment to be systematically tuned for spintronic applications. 12 The photodynamics measured in bulk copper oxides also show significant differences.…”
Section: Introductionmentioning
confidence: 99%
“…The open shell nature of CuO enables good spin conductivity, but the filled 3d orbital of Cu 2 O makes it a spin insulator. 11 Mixing the CuO and Cu 2 O stoichiometries, or increasing defect and vacancy sites, enables its magnetic moment to be systematically tuned for spintronic applications. 12 The photodynamics measured in bulk copper oxides also show significant differences.…”
Section: Introductionmentioning
confidence: 99%
“…自旋电子学是以电子的量子自由度自旋为核心对象的研究领域,以自旋为信 息或能量载体的器件研制是自旋电子学的核心研究课题之一 [1][2][3][4] 。 与传统的基于电 荷的电子器件相比,自旋电子器件具有非易失、高速度和低热损等特点,使其有 望成为下一代电子学器件的发展方向。自旋流的产生、输运及检测是自旋电子器 件及其相关研发的基本问题 [5][6][7][8][9][10] 。其中,由于自旋流与传输介质之间具有复杂的 相互作用,导致自旋流输运相关现象长期成为自旋流研究的难点及热点 [11][12][13][14][15] 。不 同的材料及界面状态对自旋流传输影响的研究对开发新型自旋电子学器件具有 重要意义。 正如诺贝尔物理学奖得主Herbert Kroemer的名言 [16] "界面即器件"所述,在 现代电子器件中界面对其功能和性能的主导作用毋庸置疑,对自旋电子器件亦然。 针对自旋流传输现象,金属与金属界面处发生的自旋流反射、损耗和透射现象(图 1(a))已被大量研究。Kurt [17] 等在分析Cu/Pt与Cu/Pd界面的自旋输运时,观察到自 旋损耗导致的自旋流不连续现象。Nguyen [18] 等发现在Co/Pt界面处具有较大的自 旋翻转系数,暗示了自旋极化电流在铁磁层和铂金属层界面处存在无法忽视的耗 散。Rojas-Sánchez [19,20] 成正比 [26,27] [29] )情况下的逆 为进一步分析 YIG/Ni/Pt 三层和 YIG/Ni 双层器件中 Ni 层及 Pt 层分别对逆自 旋霍尔电流 I ISHE 的贡献, 我们首先基于自旋泵浦理论建立以下的等效电路模型 [24,30] 。对于 YIG/Ni 双层器件而言:…”
unclassified