Abstract. In this paper, we will analyze the application of nanomaterials in biomedicine, that is to say, we will present the recent accomplishments in basic and clinical nanomedicine. Achieving the full potential of nanomedicine may be years or even decades away; however, potential advances in drug delivery, diagnosis, and the development of nanotechnology-related drugs are starting to change the landscape of medicine. Site-specific targeted drug delivery (made possible by the availability of unique delivery platforms, such as dendrimers, nanoparticles and nanoliposomes) and personalized medicine (result of the advance in pharmacogenetics) are just a few concepts on the horizon of research. In this paper, we have especially analyzed the changes in basic physical properties of sphericalshaped nanoparticles that can be made in several (nano)layers and have, at the same time, multiple applications in medicine. The subject of the research in this paper includes the modeling of nanomaterials in the field of pharmaceutical technology for biomedical application. This includes a very precise encapsulated drug delivery on the exactly defined place in the human tissue or organ and the disintegration of the capsule -drug carrier, so that the medicament can start producing its effect. The goal of multidisciplinary researches with biocompatible molecular nanomaterials is to find the parameters and the possibilities to construct boundary surfaces that will, in interaction with the biological environment, create such properties of nanolayers that can be conveniently used for layers of drug carrier capsules, biochips and biomarkers. These layers should demonstrate a controlled disintegration of structure, better dielectric properties, discrete luminescence and appropriate bioporosity, as all of these are the requirements of contemporary nanomedicine.