2020
DOI: 10.1016/j.mtla.2020.100618
|View full text |Cite
|
Sign up to set email alerts
|

Solid-state dewetting instability in thermally-stable nanocrystalline binary alloys

Abstract: Practical applications of nanocrystalline metallic thin films are often limited by instabilities. In addition to grain growth, the thin film itself can become unstable and collapse into islands through solid-state dewetting. Selective alloying can improve nanocrystalline stability, but the impact of this approach on dewetting is not clear. In this study, two alloys that exhibit nanocrystalline thermal stability as ball milled powders are evaluated as thin films. While both alloys demonstrated dewetting behavio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 73 publications
0
1
0
Order By: Relevance
“…The research of thin film dewetting has been extended to bilayers and multilayers for the synthesis of multicomponent nanoparticles [8][9][10][11][12][13][14][15][16], like alloyed AuNi and AuAg nanoparticles produced by the solid-state dewetting of bilayers [17][18][19][20][21][22][23][24][25]. Apart from Au, both Ni and Ag can also catalyze the growth of NWs based on the VLS mechanism [26][27][28], and Si NWs have been grown using alloyed AuAg nanoparticles [29].…”
Section: Introductionmentioning
confidence: 99%
“…The research of thin film dewetting has been extended to bilayers and multilayers for the synthesis of multicomponent nanoparticles [8][9][10][11][12][13][14][15][16], like alloyed AuNi and AuAg nanoparticles produced by the solid-state dewetting of bilayers [17][18][19][20][21][22][23][24][25]. Apart from Au, both Ni and Ag can also catalyze the growth of NWs based on the VLS mechanism [26][27][28], and Si NWs have been grown using alloyed AuAg nanoparticles [29].…”
Section: Introductionmentioning
confidence: 99%