2018
DOI: 10.1002/aenm.201702472
|View full text |Cite
|
Sign up to set email alerts
|

Solar‐Light‐Driven CO2 Reduction by CH4 on Silica‐Cluster‐Modified Ni Nanocrystals with a High Solar‐to‐Fuel Efficiency and Excellent Durability

Abstract: Catalytic CO2 reforming of CH4 (CRM) to produce syngas (H2 and CO) provides a promising approach to reducing global CO2 emissions and the extensive utilization of natural gas resources. However, the rapid deactivation of the reported catalysts due to severe carbon deposition at high reaction temperatures and the large energy consumption of the process hinder its industrial application. Here, a method for almost completely preventing carbon deposition is reported by modifying the surface of Ni nanocrystals with… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
138
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
1
1

Relationship

0
10

Authors

Journals

citations
Cited by 121 publications
(143 citation statements)
references
References 46 publications
4
138
0
1
Order By: Relevance
“…Converting CO 2 into synthetic natural gas through methanation has great significance for mitigating CO 2 emissions 6,7 and realizing hydrogen storage 8,9 , as the excess electric power generated at night can be used for H 2 production 911 . For CO 2 methanation, a temperature of at least 200 °C is needed to activate the catalytic reaction 12,13 , thus requiring a secondary energy source 14,15 . Solar-driven CO 2 methanation via a photothermal effect represents a promising strategy to produce CH 4 without secondary energy input 1620 .…”
Section: Introductionmentioning
confidence: 99%
“…Converting CO 2 into synthetic natural gas through methanation has great significance for mitigating CO 2 emissions 6,7 and realizing hydrogen storage 8,9 , as the excess electric power generated at night can be used for H 2 production 911 . For CO 2 methanation, a temperature of at least 200 °C is needed to activate the catalytic reaction 12,13 , thus requiring a secondary energy source 14,15 . Solar-driven CO 2 methanation via a photothermal effect represents a promising strategy to produce CH 4 without secondary energy input 1620 .…”
Section: Introductionmentioning
confidence: 99%
“…32 Recent developments in solardriven photothermal CH 4 oxidation have allowed the generation of CO 2 and H 2 using composite materials (Ni/SiO 2 and Rh/TiO 2 ). 40,41 Under solar irradiation, the surface temperature of the catalysts can reach up to 400 C-500 C. An H 2 O 2 strategy based on single-atom catalysts permitted CH 4 conversion to CH 3 OH under mild conditions (room temperature and 2 MPa), providing an exciting route to CH 4 conversion. 42 Furthermore, photocatalytic (one sun) conversion of CH 4 to CH 3 OH with a high selectivity of over 90% in alcohols has been reported over FeO x -TiO 2 using H 2 O 2 at room temperature and pressure.…”
Section: Solar and Thermally Catalyzed Small-molecule Conversionmentioning
confidence: 99%
“…[198] Aufd er Grundlage dieser Information entwickelte die Gruppe von Li auf mesoporçsem Siliciumdioxid fixierte,S iliciumdioxidcluster-modifizierte Ni-Nanokristalle (als SCM-Ni/SiO 2 bezeichnet), die die Kohlenstoffabscheidung bei der DRM vollständig unterdrückten und so einen DRM-Katalysator mit ausgezeichneter Aktivitätu nd Beständigkeit ergaben. [199] Anschließend beschrieb die Arbeitsgruppe wirkungsvolle DRM in einem kontinuierlichen Durchflussreaktor unter Sonnenlichtbestrahlung [199] mit sehr hohen Produktionsraten von H 2 (17.1 mmol min À1 g À1 )u nd CO (19.9 mmol min À1 g À1 ). Der Sonnenlicht-zu-Brennstoff-Wirkungsgrad des SCM-Ni/SiO 2 -Katalysators erreichte einen hohen Wert von 12.5 %.…”
Section: Angewandte Chemieunclassified