Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements. angiosperm evolution ͉ molecular evolution A ngiosperms, the largest clade of land plants with Ͼ250,000 species, experienced rapid radiation soon after their first appearance in the fossil record (1). As a result, flowering plants exhibit incredible diversity in habit, morphology, anatomy, physiology, and reproductive biology. This variation has presented major challenges to biologists interested in the origin and evolution of these traits, and resolving these issues critically depends on having a well resolved and strongly supported phylogenetic framework. Over the past 20 years, numerous phylogenetic studies have used both morphological and molecular data to assess relationships among the major clades (reviewed in ref.2), resulting in a widely accepted classification of angiosperms with 45 orders and 457 families (3).For nearly two decades, most phylogenetic analyses of angiosperms have relied on DNA sequences of one to several genes from the plastid, mitochondrial, and nuclear genomes (reviewed in ref.2). Despite these intensive efforts there are still uncertainties regarding relationships among several major clades throughout angiosperms, including the earliest diverging lineages. Recent studies support the placement of Amborella sister to all remaining angiosperms, but support is often low. Amborella has also been placed with waterlilies (Nymphaeales) in a clade sister to other angiosperms (4-7). In many studies, resolution of r...