In recent years, various mixed-effects models have been suggested for estimating viral decay rates in HIV dynamic models for complex longitudinal data. Among those models are linear mixed-effects (LME), nonlinear mixed-effects (NLME), and semiparametric nonlinear mixedeffects (SNLME) models. However, a critical question is whether these models produce coherent estimates of viral decay rates, and if not, which model is appropriate and should be used in practice. In addition, one often assumes that a model random error is normally distributed, but the normality assumption may be unrealistic, particularly if the data exhibit skewness. Moreover, some covariates such as CD4 cell count may be often measured with substantial errors. This paper addresses these issues simultaneously by jointly modeling the response variable with skewness and a covariate process with measurement errors using a Bayesian approach to investigate how estimated parameters are changed or different under these three models. A real data set from an AIDS clinical trial study was used to illustrate the proposed models and methods. It was found that there was a significant incongruity in the estimated decay rates in viral loads based on the three mixed-effects models, suggesting that the decay rates estimated by using Bayesian LME or NLME joint models should be interpreted differently from those estimated by using Bayesian SNLME joint models. The findings also suggest that the Bayesian SNLME joint model is preferred to other models because an arbitrary data truncation is not necessary; and it is also shown that the models with a skew-normal distribution and/or measurement errors in covariate may achieve reliable results when the data exhibit skewness.