In articles published in 2009 and 2010, Suk and Yeh reported the development of an accurate and efficient particle tracking algorithm for simulating a path line under complicated unsteady flow conditions, using a range of elements within finite elements in multidimensions. Here two examples, an aquifer storage and recovery (ASR) example and a landfill leachate migration example, are examined to enhance the practical implementation of the proposed particle tracking method, known as Suk's method, to a real field of groundwater flow and transport. Results obtained by Suk's method are compared with those obtained by Pollock's method. Suk's method produces superior tracking accuracy, which suggests that Suk's method can describe more accurately various advection-dominated transport problems in a real field than existing popular particle tracking methods, such as Pollock's method. To illustrate the wide and practical applicability of Suk's method to random-walk particle tracking (RWPT), the original RWPT has been modified to incorporate Suk's method. Performance of the modified RWPT using Suk's method is compared with the original RWPT scheme by examining the concentration distributions obtained by the modified RWPT and the original RWPT under complicated transient flow systems.