2010
DOI: 10.1088/0268-1242/26/1/014029
|View full text |Cite
|
Sign up to set email alerts
|

SiGe nanostructures with self-assembled islands for Si-based optoelectronics

Abstract: The effect of structure parameters on the electroluminescence and photoconductivity of multilayer structures with self-assembled Ge(Si)/Si(0 0 1) islands has been studied. The highest intensity of the room-temperature electroluminescence in the wavelength range of 1.3-1.55 μm has been observed for the islands grown at 600 • C. The same diode structures with Ge(Si)/Si(0 0 1) islands have demonstrated room-temperature photoconductivity signals in the wavelength range of 1.3-1.55 μm. The observed overlap of the e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
10
0
9

Year Published

2013
2013
2022
2022

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 43 publications
(20 citation statements)
references
References 31 publications
(51 reference statements)
0
10
0
9
Order By: Relevance
“…Such interest is due to the possibility to create LEDs and lasers by means of highly developed planar CMOS technology and their integration with micro-and optoelectronic devices and fiber optic lines. Since the wavelength range of 1.5-1.6 μm is of the special interest for optoelectronics (transparency region for Si and SiO 2 ), currently there are four basic directions in creation of Si-based thin film structures emitting light in this spectral range: (1) doping of Si by rare earth Er ions [1], (2) synthesis of direct bandgap silicides such as β-FeSi 2 [2][3][4], (3) defect engineering including introduction of point (W-and G-centers) and extended (dislocationinduced D1-D4 lines) defects [5][6][7][8] and (4) growth of SiGe alloys, Ge quantum dots in Si and continuous Ge films on Si [9][10][11][12][13][14]. The most significant progress in the creation of effective light emitting structures has been reached for Ge/Si layers within the last method mentioned above where laser generation under optical and electrical pumping was obtained at room temperature [13].…”
mentioning
confidence: 99%
“…Such interest is due to the possibility to create LEDs and lasers by means of highly developed planar CMOS technology and their integration with micro-and optoelectronic devices and fiber optic lines. Since the wavelength range of 1.5-1.6 μm is of the special interest for optoelectronics (transparency region for Si and SiO 2 ), currently there are four basic directions in creation of Si-based thin film structures emitting light in this spectral range: (1) doping of Si by rare earth Er ions [1], (2) synthesis of direct bandgap silicides such as β-FeSi 2 [2][3][4], (3) defect engineering including introduction of point (W-and G-centers) and extended (dislocationinduced D1-D4 lines) defects [5][6][7][8] and (4) growth of SiGe alloys, Ge quantum dots in Si and continuous Ge films on Si [9][10][11][12][13][14]. The most significant progress in the creation of effective light emitting structures has been reached for Ge/Si layers within the last method mentioned above where laser generation under optical and electrical pumping was obtained at room temperature [13].…”
mentioning
confidence: 99%
“…В последнее время наблюдается заметный прогресс на пути создания источников излучения на базе материалов IV группы, совместимых с существующей кремниевой интегральной технологией [1][2][3][4][5][6][7][8][9][10]. Эти источники являются одним из ключевых элементов быстродействующих схем оптической передачи данных, которые разрабатываются для современных процессоров и компьютеров нового поколения.…”
Section: Introductionunclassified
“…В ряде ра-бот [1] показано, что КТ Ge/Si обладают как привлека-тельными люминесцентными свойствами, так и фотопро-водимостью в области энергий кванта излучения, мень-шей ширины запрещенной зоны кремния. Это открывает широкие возможности по использованию таких струк-тур в качестве материалов активной элементной базы для оптических межсоединений в микроэлектронике [2]. В недавней работе [3] сообщается о наблюдении при комнатной температуре стимулированного излучения вблизи 1.3 мкм из частично аморфных германиевых КТ в кремниевой матрице внутри микродискового резонатора при оптической накачке.…”
Section: Introductionunclassified