Symbiotic relationships drive evolutionary change and are important sources of novelty. Here we demonstrate a highly structured syntrophic symbiosis between species of the anaerobic protistAnaeramoeba(Anaeramoebae, Metamonada) and bacterial ectosymbionts. We dissected this symbiosis with long-read metagenomics, transcriptomics of host and symbiont cells coupled with fluorescent in situ hybridization (FISH), and microscopy. Genome sequencing, phylogenomic analyses and FISH show that the symbionts belong to theDesulfobacteraceaeand were acquired independently in two differentAnaeramoebaspecies. We show that ectosymbionts likely reside deep within cell surface invaginations in a symbiosomal membrane network that is tightly associated with cytoplasmic hydrogenosomes. Metabolic reconstructions based on the genomes and transcriptomes of the symbionts suggest a highly evolved syntrophic interaction. Host hydrogenosomes likely produce hydrogen, acetate, and propionate that are consumed by the symbionts dissimilatory sulfate reduction, Wood-Ljungdahl and methylmalonyl pathways, respectively. Because the host genome sequences encode several vitamin B12-dependent enzymes but appear to lack the ability to biosynthesize this vitamin, we hypothesize that the symbionts supply their hosts with B12. We detected numerous lateral gene transfers from diverse bacteria toAnaeramoeba, including genes involved in oxygen defense and anaerobic metabolism. Gene families encoding membrane-trafficking components that regulate the phagosomal maturation machinery are notably expanded inAnaeramoebaspp. and may be involved in organizing and/or stabilizing the symbiosomal membrane system. Overall, the Anaeramoebae have evolved a dynamic symbiosome comprised of a vacuolar system that facilitates positioning and maintenance of sulfate-reducing bacterial ectosymbionts.