The spike protein from transmissible gastroenteritis virus (TGEV) was expressed in attenuated S. typhimurium delta cya delta crp delta asd chi 3987. Three partially overlapping fragments of TGEV S gene, encoding the amino-terminal, intermediate, and carboxy-terminal end of the protein, as well as the full length gene were inserted into the asd+ plasmid pYA292 to generate recombinant plasmids pYATS-1, pYATS-2, pYATS-3, and pYATS-4, respectively, which were transformed into S. typhimurium chi 3987. Recombinant S. typhimurium chi 3987 (pYATS-1) and chi 3987 (pYATS-4) expressing constitutively a 53 kDa amino-terminal fragment of the S protein and the full length protein (144 kDa), respectively, showed high stability. After 50 generations in vitro 60% and 20% of the bacteria transformed with pYATS-1 and pYATS-4, respectively, expressed the S-protein antigen. Since S. typhimurium chi 3987 (pYATS-1) showed a better level of expression and stability in vitro, this recombinant strain was selected as a potential bivalent vector to induce both immunity to Salmonella and TGEV in swine. In order to study colonization of swine tissues by S. typhimurium delta cya delta crp, a gene conferring resistance to rifampicin was cloned into the chromosome of S. typhimurium chi 3987, generating chi 4509 strain. Both S. typhimurium chi 4509 (pYA292) and chi 4509 (pYATS-1) colonized the ileum of orally inoculated swine with clearance of bacteria between days 10-20 post-infection. The expression of the amino-terminal fragment of the S protein diminished the ability of S. typhimurium chi 4509 (pYATS-1) to colonize deep tissues. The recombinant strain S. typhimurium chi 3987 (pYATS-1) induced TGEV specific antibodies in both serum and saliva of orally inoculated swine.