2016
DOI: 10.1242/jcs.179358
|View full text |Cite
|
Sign up to set email alerts
|

Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila

Abstract: Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridizat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
14
0

Year Published

2016
2016
2024
2024

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 10 publications
(14 citation statements)
references
References 38 publications
0
14
0
Order By: Relevance
“…The expression of a D-box, KEN-box mutant version of Securin in Drosophila oocytes that were depleted of endogenous Securin by RNAi, produced a delay or failure of homolog segregation in meiosis I and sister segregation in meiosis II. In the same study it was found that RNAi knockdown of the Drosophila Separase gene leads to an identical phenotype [78] (Figure 2). Interestingly, neither Separase knockdown nor stabilized Securin lead to a complete failure of cohesion release in meiosis, though both produced a complete and stable failure of cohesion release in the post-meiotic polar body chromosomes [78].…”
Section: Chromosome Cohesion and Its Release In Meiosismentioning
confidence: 78%
See 4 more Smart Citations
“…The expression of a D-box, KEN-box mutant version of Securin in Drosophila oocytes that were depleted of endogenous Securin by RNAi, produced a delay or failure of homolog segregation in meiosis I and sister segregation in meiosis II. In the same study it was found that RNAi knockdown of the Drosophila Separase gene leads to an identical phenotype [78] (Figure 2). Interestingly, neither Separase knockdown nor stabilized Securin lead to a complete failure of cohesion release in meiosis, though both produced a complete and stable failure of cohesion release in the post-meiotic polar body chromosomes [78].…”
Section: Chromosome Cohesion and Its Release In Meiosismentioning
confidence: 78%
“…In the same study it was found that RNAi knockdown of the Drosophila Separase gene leads to an identical phenotype [78] (Figure 2). Interestingly, neither Separase knockdown nor stabilized Securin lead to a complete failure of cohesion release in meiosis, though both produced a complete and stable failure of cohesion release in the post-meiotic polar body chromosomes [78]. While it is possible that incomplete effects are due to a failure to completely inactivate Separase in these experiments, it could also be that a 2nd pathway for cohesion release operates in parallel with and partially redundant with the Securin/Separase pathway.…”
Section: Chromosome Cohesion and Its Release In Meiosismentioning
confidence: 78%
See 3 more Smart Citations