2015
DOI: 10.5372/1905-7415.0904.430
|View full text |Cite
|
Sign up to set email alerts
|

Role of CYP2E1 and NQO1 polymorphisms in oxidative stress derived cancer in Thais with and without dyslipidemia

Abstract: Background: Hyperlipidemia can induce the endogenous production of reactive oxygen species (ROS), which may cause carcinogenesis. Cytochrome P450 (CYP)2E1 activity, induced by various factors including polyunsaturated fatty acids, effects the incidence of cancers, whereas NQO1, a flavoprotein, may protect against ROS. Objectives: To investigate the effect of CYP2E1 and NQO1 polymorphism on oxidative stress status in Thais with and without dyslipidemia. Methods: We included 1380 apparently healthy employees of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2016
2016

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 38 publications
(34 reference statements)
0
1
0
Order By: Relevance
“…Another mechanism of CYP2E1 activation is the reduction of glutathione levels, upon acetaminophen administration, for example. Besides, this drug increases lipid peroxidation and protein carbonylation, enhancing the ROS production due to higher activity of CYP2E1 and being associated to hepatotoxicity mediated by MAP-kinase pathway [16,19].…”
Section: Antioxidant Defense Systemmentioning
confidence: 99%
“…Another mechanism of CYP2E1 activation is the reduction of glutathione levels, upon acetaminophen administration, for example. Besides, this drug increases lipid peroxidation and protein carbonylation, enhancing the ROS production due to higher activity of CYP2E1 and being associated to hepatotoxicity mediated by MAP-kinase pathway [16,19].…”
Section: Antioxidant Defense Systemmentioning
confidence: 99%