A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights: Four weighted fusion methods for surface measurement were classified and analysed. The uncertainty propagation and the relationship with Kalman filter were analysed. Advanced models compatible with different fusion methods were described. Experiments verified the effectiveness of weighted fusion on accuracy improvement. Weighted fusion complements residual approximation fusion in many fusion scenarios.
AbstractFour types of weighted fusion methods, including pixel-level, least-squares, parametrical and non-parametrical, have been classified and theoretically analysed in this study. In particular, the uncertainty propagation of the weighted least-squares fusion was analysed and its relation to the Kalman filter was studied. In cooperation with different fitting models, these four weighted fusion methods can be applied to a range of measurement challenges.The experimental results of this study show that the four weighted fusion methods compose a computationally efficient and reliable system for multi-sensor measurement problems, especially for freeform surface measurement. A comparison of weighted fusion with residual approximation-based fusion has also been conducted by providing the input datasets with different noise levels and sample sizes. The results demonstrated that weighted fusion and residual approximation-based fusion are complementary approaches applicable to most fusion scenarios.