Rhynchanthus beesianus is a medicinal, ornamental, and edible plant, and its essential oil has been used as an aromatic stomachic in China. In this study, the chemical constituents, antibacterial, and anti-inflammatory properties of flower essential oil (F-EO), leaf essential oil (L-EO), and stem essential oil (S-EO) of R. beesianus were investigated for the first time. According to the GC-FID/MS assay, the F-EO was mainly composed of bornyl formate (21.7%), 1,8-cineole (21.6%), borneol (9.7%), methyleugenol (7.7%), β-myrcene (5.4%), limonene (4.7%), camphene (4.5%), linalool (3.4%), and α-pinene (3.1%). The predominant components of L-EO were bornyl formate (33.9%), borneol (13.2%), 1,8-cineole (12.1%), methyleugenol (8.0%), camphene (7.8%), bornyl acetate (6.2%), and α-pinene (4.3%). The main components of S-EO were borneol (22.5%), 1,8-cineole (21.3%), methyleugenol (14.6%), bornyl formate (11.6%), and bornyl acetate (3.9%). For the bioactivities, the F-EO, L-EO, and S-EO exhibited significant antibacterial property against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli with the inhibition zones (7.28–9.69 mm), MIC (3.13–12.50 mg/mL), and MBC (6.25–12.50 mg/mL). Besides, the F-EO, L-EO, and S-EO significantly inhibited the production of proinflammatory mediator nitric oxide (NO) (93.15–94.72%) and cytokines interleukin-6 (IL-6) (23.99–77.81%) and tumor necrosis factor-α (TNF-α) (17.69–24.93%) in LPS-stimulated RAW264.7 cells at the dose of 128 μg/mL in the absence of cytotoxicity. Hence, the essential oils of R. beesianus flower, leaf, and stem could be used as natural antibacterial and anti-inflammatory agents with a high application potential in the pharmaceutical and cosmetic fields.