Background
Serum albumin level is a crucial nutritional indicator for patients on dialysis. Approximately one-third of patients on hemodialysis (HD) have protein malnutrition. Therefore, the serum albumin level of patients on HD is strongly correlated with mortality.
Methods
In study, the data sets were obtained from the longitudinal electronic health records of the largest HD center in Taiwan from July 2011 to December 2015, included 1,567 new patients on HD who met the inclusion criteria. Multivariate logistic regression was performed to evaluate the association of clinical factors with low serum albumin, and the grasshopper optimization algorithm (GOA) was used for feature selection. The quantile g-computation method was used to calculate the weight ratio of each factor. Machine learning and deep learning (DL) methods were used to predict the low serum albumin. The area under the curve (AUC) and accuracy were calculated to determine the model performance.
Results
Age, gender, hypertension, hemoglobin, iron, ferritin, sodium, potassium, calcium, creatinine, alkaline phosphatase, and triglyceride levels were significantly associated with low serum albumin. The AUC and accuracy of the GOA quantile g-computation weight model combined with the Bi-LSTM method were 98% and 95%, respectively.
Conclusion
The GOA method was able to rapidly identify the optimal combination of factors associated with serum albumin in patients on HD, and the quantile g-computation with DL methods could determine the most effective GOA quantile g-computation weight prediction model. The serum albumin status of patients on HD can be predicted by the proposed model and accordingly provide patients with better a prognostic care and treatment.