1968
DOI: 10.1111/j.1460-2466.1968.tb00084.x
|View full text |Cite
|
Sign up to set email alerts
|

Rejoinder

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

1994
1994
2013
2013

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 17 publications
(11 reference statements)
0
3
0
Order By: Relevance
“…The similarity to Watson transformations [16] also becomes apparent, although a Watson transformation is a well-defined mapping on equivalence classes of forms, and a Watson transformation does not send a form with some odd prime p ∆ to a form with ∆ = 0 (mod p). The closest parallel we know involving a Watson transformation is the descent of a form (probably regular) with ∆ = 2592 = 32 · 81 to one with ∆ = 32 that is regular, in that λ 9 ( 5,9,17,6,5, 3 ) = 1, 3, 3, 1, 0, 1 .…”
Section: Tornaria's Constructionsmentioning
confidence: 99%
See 2 more Smart Citations
“…The similarity to Watson transformations [16] also becomes apparent, although a Watson transformation is a well-defined mapping on equivalence classes of forms, and a Watson transformation does not send a form with some odd prime p ∆ to a form with ∆ = 0 (mod p). The closest parallel we know involving a Watson transformation is the descent of a form (probably regular) with ∆ = 2592 = 32 · 81 to one with ∆ = 32 that is regular, in that λ 9 ( 5,9,17,6,5, 3 ) = 1, 3, 3, 1, 0, 1 .…”
Section: Tornaria's Constructionsmentioning
confidence: 99%
“…By Theorem 3.2, we know that g 1 corresponds with at least one of the three forms in the genus of f 0 . However, if 1,4,9,4, 0, 0 should represent n 2 g 1 , it would follow that 1, 4, 9, 4, 0, 0 represented the integer n 2 p 2 2 , which is of the form 2m 2 . It follows that g 0 represents either n 2 · 1, 1, 32, 0, 0, 0 or n 2 · 2, 2, 9, 2, 2, 0 .…”
Section: Proofmentioning
confidence: 99%
See 1 more Smart Citation