The effects of nonpoint source nutrients on estuaries can be difficult to pinpoint, with researchers often using indicator species, monitoring, and models to detect influence and change. Here, we made stable isotope measurements of nitrogen and carbon in sediment, water column particulates, primary producers, and consumers at 35 stations in the reportedly eutrophic Barnegat Bay (New Jersey) to assess N sources and processing pathways. Combined with water quality and hydrological data, our C and N isoscapes revealed four distinct geographic zones with diverging isotopic baselines, indicating variable nutrient sources and processing pathways. Overall, the carbon stable isotopes (δ13C) reflected the terrestrial-marine gradient with the most depleted values in the urban and poorly flushed north of the estuary to the most enriched values in the salt marsh-dominated south. In contrast, the nitrogen stable isotope values (δ15N) were most enriched near the oceanic inlets and were consistent with offshore δ15N values in particulate organic matter. Several biogeochemical processes likely alter δ15N, but the relatively lower δ15N values associated with the most urbanized area indicate that anthropogenic runoff is not a dominant N source to this area. Our findings stand in contrast to previous studies of similar estuaries, as δ15N signatures of biota in this system are inversely correlated to population density and nutrient concentrations. Further, our analyses of archival plant (Spartina sp., Phragmites australis) and shell (Geukensia demissa, Ilyanassa obsoleta) samples collected between 1880 and 2020 indicated that δ15N values have decreased over time, particularly in the consumers. Overall, we find that water quality issues appear to be most acute in the poorly flushed parts of Barnegat Bay and emphasize the important role that oceanic exchange plays in water quality and associated estuarine food webs in the lagoon.