Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Salivary alpha-amylase (sAA) activity has been widely used in psychological and medical research as a surrogate marker of sympathetic nervous system activation, though its utility remains controversial. The aim of this work was to compare alternative intensive longitudinal models of sAA data: (a) a traditional model, where sAA is a function of hour (hr) and hr squared (sAAj,t = f(hr, hr2), and (b) an autoregressive model, where values of sAA are a function of previous values (sAAj,t = f(sAA j,t-1, sAA j,t-2, …, sAA j,t-p). Nineteen normal subjects (9 males and 10 females) participated in the experiments and measurements were performed every hr between 9:00 and 21:00 hr. Thus, a total of 13 measurements were obtained per participant. The Napierian logarithm of the enzymatic activity of sAA was analysed. Data showed that a second-order autoregressive (AR(2)) model was more parsimonious and fitted better than the traditional multilevel quadratic model. Therefore, sAA follows a process whereby, to forecast its value at any given time, sAA values one and two hr prior to that time (sAA j,t = f(SAAj,t-1, SAAj,t-2) are most predictive, thus indicating that sAA has its own inertia, with a “memory” of the two previous hr. These novel findings highlight the relevance of intensive longitudinal models in physiological data analysis and have considerable implications for physiological and biobehavioural research involving sAA measurements and other stress-related biomarkers.
Salivary alpha-amylase (sAA) activity has been widely used in psychological and medical research as a surrogate marker of sympathetic nervous system activation, though its utility remains controversial. The aim of this work was to compare alternative intensive longitudinal models of sAA data: (a) a traditional model, where sAA is a function of hour (hr) and hr squared (sAAj,t = f(hr, hr2), and (b) an autoregressive model, where values of sAA are a function of previous values (sAAj,t = f(sAA j,t-1, sAA j,t-2, …, sAA j,t-p). Nineteen normal subjects (9 males and 10 females) participated in the experiments and measurements were performed every hr between 9:00 and 21:00 hr. Thus, a total of 13 measurements were obtained per participant. The Napierian logarithm of the enzymatic activity of sAA was analysed. Data showed that a second-order autoregressive (AR(2)) model was more parsimonious and fitted better than the traditional multilevel quadratic model. Therefore, sAA follows a process whereby, to forecast its value at any given time, sAA values one and two hr prior to that time (sAA j,t = f(SAAj,t-1, SAAj,t-2) are most predictive, thus indicating that sAA has its own inertia, with a “memory” of the two previous hr. These novel findings highlight the relevance of intensive longitudinal models in physiological data analysis and have considerable implications for physiological and biobehavioural research involving sAA measurements and other stress-related biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.