2009
DOI: 10.1142/s1793744209000043
|View full text |Cite
|
Sign up to set email alerts
|

Quelques tentatives de définir une notion générale de groupes et de corps de dimension un et de déterminer leurs propriétés algébriques

Abstract: We make some attempts to define a general notion of groups and fields of dimension one, and to determine their algebraic properties.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
9
0
2

Year Published

2010
2010
2014
2014

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(11 citation statements)
references
References 19 publications
0
9
0
2
Order By: Relevance
“…So the almost stabiliser of all the cosets is an ideal of δ having finite index, hence equals the whole of δ. We finish as Poizat in [21] : we have just shown that 1 + aM ≃ aM for every coset aM , where ≃ stands for equality up to small Cantor rank over δ. For every coset aM , and every x in aM but a small ranked set, 1 + x belongs to aM , so x −1 + 1 ∈ M , and the complement of M has a small Cantor rank : M is exactly K × .…”
Section: Weakly Small Fieldsmentioning
confidence: 85%
See 1 more Smart Citation
“…So the almost stabiliser of all the cosets is an ideal of δ having finite index, hence equals the whole of δ. We finish as Poizat in [21] : we have just shown that 1 + aM ≃ aM for every coset aM , where ≃ stands for equality up to small Cantor rank over δ. For every coset aM , and every x in aM but a small ranked set, 1 + x belongs to aM , so x −1 + 1 ∈ M , and the complement of M has a small Cantor rank : M is exactly K × .…”
Section: Weakly Small Fieldsmentioning
confidence: 85%
“…Wagner drew the same conclusion for a small field, as well as for a minimal field of positive characteristic [25,26]. Poizat extended the latter to d-minimal fields of positive characteristic [21]. Whether the same result holds even for a minimal field of characteristic zero is still unknown.…”
mentioning
confidence: 85%
“…A non minimal, d-minimal group. Recall that a minimal group is abelian [20,Reineke], and a d-minimal group is abelian-by-finite [17,Poizat]. Let M be a minimal group, and F a finite group of order d. Any semi-direct product M ⋊ F with a predicate interpreting M will do.…”
Section: Definition 2 (Belegradek)mentioning
confidence: 99%
“…G is an infinite group with bounded exponent and only one non-trivial conjugacy class. Such a group does not exist [20,17,Reineke]. For instance, as a group of exponent 2 is abelian, the group should have exponent a prime p = 2.…”
Section: (9) Final Contradictionmentioning
confidence: 99%
“…Il s'avère que les structures algébriques menues et les structures stables ont de nombreux caractères sinon semblables, du moins analogues. Les corps infinis tout d'abord ; qu'ils soient stables ou menus, ils n'ont pas de sous-groupes définissables d'indice fini, ni additifs, ni multiplicatifs (A. Macintyre [11] pour les corps stables, F. Wagner [17,Proposition 6] pour les corps menus et [9] pour les corps minces). Les corps menus infinis sont algébriquement clos (F. Wagner [17]), tandis que les corps superstables infinis sont algébriquement clos (G. Cherlin et S. Shelah [3]), que les corps stables infinis n'ont pas d'extensions de type Artin-Schreier (T. Scanlon [5,14]), et on conjecture qu'ils n'ont pas d'extensions séparables (voir [18]).…”
unclassified