Oxidative damage in microbial cells occurs during exposure to the toxic metal chromium, but it is not certain whether such oxidation accounts for the toxicity of Cr. Here, a Saccharomyces cerevisiae sod1D mutant (defective for the Cu,Zn-superoxide dismutase) was found to be hypersensitive to Cr(VI) toxicity under aerobic conditions, but this phenotype was suppressed under anaerobic conditions. Studies with cells expressing a Sod1p variant (Sod1 H46C ) showed that the superoxide dismutase activity rather than the metal-binding function of Sod1p was required for Cr resistance. To help identify the macromolecular target(s) of Cr-dependent oxidative damage, cells deficient for the reduction of phospholipid hydroperoxides (gpx3D and gpx1D/gpx2D/gpx3D) and for the repair of DNA oxidation (ogg1D and rad30D/ogg1D) were tested, but were found not to be Cr-sensitive. In contrast, S. cerevisiae msraD (mxr1D) and msrbD (ycl033cD) mutants defective for peptide methionine sulfoxide reductase (MSR) activity exhibited a Cr sensitivity phenotype, and cells overexpressing these enzymes were Cr-resistant. Overexpression of MSRs also suppressed the Cr sensitivity of sod1D cells. The inference that protein oxidation is a primary mechanism of Cr toxicity was corroborated by an observed~20-fold increase in the cellular levels of protein carbonyls within 30 min of Cr exposure. Carbonylation was not distributed evenly among the expressed proteins of the cells; certain glycolytic enzymes and heat-shock proteins were specifically targeted by Cr-dependent oxidative damage. This study establishes an oxidative mode of Cr toxicity in S. cerevisiae, which primarily involves oxidative damage to cellular proteins.