2001
DOI: 10.1109/7.976969
|View full text |Cite
|
Sign up to set email alerts
|

Principles of a three-axis vibrating gyroscope

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
24
0
2

Year Published

2005
2005
2019
2019

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(30 citation statements)
references
References 7 publications
1
24
0
2
Order By: Relevance
“…This relationship can be used to extract the value of λ from the simulation results, which in this case yield λ ≈ 0.6174 (using f 0 = 10.41 MHz, Q = 56, 000). This is close to the value λ = 2n/(n 2 + 1) = 0.6 obtained from the theoretical analysis of the resonance modes of an ideal ring gyroscope [23]. Figure 7 plots the simulated outputs of the sensor and calibration architectures of Figs.…”
Section: Numerical and Experimental Resultssupporting
confidence: 76%
See 1 more Smart Citation
“…This relationship can be used to extract the value of λ from the simulation results, which in this case yield λ ≈ 0.6174 (using f 0 = 10.41 MHz, Q = 56, 000). This is close to the value λ = 2n/(n 2 + 1) = 0.6 obtained from the theoretical analysis of the resonance modes of an ideal ring gyroscope [23]. Figure 7 plots the simulated outputs of the sensor and calibration architectures of Figs.…”
Section: Numerical and Experimental Resultssupporting
confidence: 76%
“…where x 1 and x 2 are generalized coordinates [23], ω 1 and ω 2 the resonance frequencies of the two resonance modes of the system, Q 1 and Q 2 their respective quality factors, and d 12 and ω 12 are coefficients that model the coupling between the two resonance modes caused by non-ideal behavior of the physical device. The right-hand side of (1) represents the external excitations applied to each resonance mode, while the effect of the Coriolis force is modeled by terms 2λΩ zẋ1 and 2λΩ zẋ2 , where Ω z is the angular rotation velocity around the sensitive axis of the gyroscope, and λ a constant that depends on the gyroscope type and on the index of the resonance modes of the device [23]. If the system is in sinusoidal steady-state at a given frequency ω, then (1) is equivalent to the following set of equations where F I , F Q and X 1 , X 2 are the phasors of the applied excitations and of the generalized coordinates, respectively, and…”
Section: Sensor Mode Operationmentioning
confidence: 99%
“…1, б и в). Во вторых режимах движение кольцевого резонатора пропорционально измеряемой угловой скорости, поэтому величины амплитуд вторых движений определяют измеряемую величину угловой скорости относительно соответст-вующей оси [2]. При существующей угловой скорости (Ω Z ) точ-ки в плоскости кольца (45, 135, 225 и 315° относи-тельно главных осей) показывают величину изме-ряемой угловой скорости.…”
Section: функциональная схема трёхосевого волнового оптоэлектронного unclassified
“…Для частоты собственных колебаний второго режима «на плоскости» частота собственных коле-баний определяется как     Для правильного функционирования КР необ-ходимо, чтобы частота собственных колебаний ре-жима «в плоскости» и режима «на плоскости» име-ли одинаковую резонансную частоту [2]. Разностная частота собственных колебаний(F = f 1 -f 2 ) зависит от значений толщины и ширины кольца (рис.…”
Section: функциональная схема трёхосевого волнового оптоэлектронного unclassified
“…The vibrating ring gyroscope is immune to the spurious vibration and temperature change, and has the symmetric structure which also shows outstanding rotational detection [5]. The ring gyroscope have been studied for a single axis device at [6] and a 3 axis silicon ring gyroscope using in-plane & out-of-plane operation at [7], etc. 3 axis angular velocity is measured using the in-plane and out of plane structure to contain into same die.…”
Section: Introductionmentioning
confidence: 99%