This paper presents an organic semiconductor transistor, with a vertical current modulation and a horizontal conduction. The simulations show a stronger top gate influence and establish four work regimes, depending on the top and bottom gates biasing. In the most favorable regime for the holes channel, under the reverse biased n + p junction, the holes/electrons current densities ratio reaches 0.168/269. However, an ambipolar OTFT function occurs under the reverse biasing of the vertical junction, with a top n-layer and a bottom p-layer. Due to the asymmetrical doping profile, the n + channel conduction prevails in all the regimes. Therefore, the maximum current density of 1900A/cm 2 is ensured by a double n channel, when both gates are positive biased. After simulations, three distinct work regimes are revealed by this single device: a SOI behavior with volume channel, a JFET with neutral median channel and an OTFT with one or more interface channels.