Transparent conducting oxides (TCOs) are increasingly critical components in photovoltaic cells, low‐e windows, flat panel displays, electrochromic devices, and flexible electronics. The conventional TCOs, such as Sn‐doped In2O3, are crystalline single phase materials. Here, we report on In‐Zn‐O (IZO), a compositionally tunable amorphous TCO with some significantly improved properties. Compositionally graded thin film samples were deposited by co‐sputtering from separate In2O3 and ZnO targets onto glass substrates at 100 °C. For the metals composition range of 55–84 cation% indium, the as‐deposited IZO thin films are amorphous, smooth (RRMS < 0.4 nm), conductive (σ ∼ 3000 Ω−1 · cm−1), and transparent in the visible (TVis > 90%). Furthermore, the amorphous IZO thin films demonstrate remarkable functional and structural stability with respect to heating up to 600 °C in either air or argon. Hence, though not completely understood at present, these amorphous materials constitute a new class of fundamentally interesting and technologically important high performance transparent conductors.