2021
DOI: 10.1016/j.electacta.2020.137183
|View full text |Cite
|
Sign up to set email alerts
|

Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
13
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
(15 citation statements)
references
References 24 publications
0
13
0
2
Order By: Relevance
“…These materials are gaining momentum as prospective photocathodes for H 2 production in photoelectrochemical (PEC) water splitting cells [8–12] . Their attractiveness relies on their superb optoelectronic properties, their compatibility with solution‐based manufacturing techniques, their ready‐to‐market photovoltaic performance, and their well‐positioned energy bands to trigger the hydrogen evolution reaction (HER), among others [13–15] . While typical chalcopyrite photocathodes utilize a complex buried junction architecture, [15, 16] recently, a direct chalcopyrite/electrolyte interface has shown hours‐stable H 2 ‐related saturation photocurrents close to the theoretical limit based on their band gap [13, 14] .…”
Section: Figurementioning
confidence: 99%
See 2 more Smart Citations
“…These materials are gaining momentum as prospective photocathodes for H 2 production in photoelectrochemical (PEC) water splitting cells [8–12] . Their attractiveness relies on their superb optoelectronic properties, their compatibility with solution‐based manufacturing techniques, their ready‐to‐market photovoltaic performance, and their well‐positioned energy bands to trigger the hydrogen evolution reaction (HER), among others [13–15] . While typical chalcopyrite photocathodes utilize a complex buried junction architecture, [15, 16] recently, a direct chalcopyrite/electrolyte interface has shown hours‐stable H 2 ‐related saturation photocurrents close to the theoretical limit based on their band gap [13, 14] .…”
Section: Figurementioning
confidence: 99%
“…[ 8 , 9 , 10 , 11 , 12 ] Their attractiveness relies on their superb optoelectronic properties, their compatibility with solution‐based manufacturing techniques, their ready‐to‐market photovoltaic performance, and their well‐positioned energy bands to trigger the hydrogen evolution reaction (HER), among others. [ 13 , 14 , 15 ] While typical chalcopyrite photocathodes utilize a complex buried junction architecture,[ 15 , 16 ] recently, a direct chalcopyrite/electrolyte interface has shown hours‐stable H 2 ‐related saturation photocurrents close to the theoretical limit based on their band gap. [ 13 , 14 ] While promising, given the multi‐atomic surface of chalcopyrites, the origin of the surface reactivity remains to be elucidated, and moreover, an explanation for the inferior turn‐on voltages ( V on ) exhibited by these bare chalcopyrites is still missing.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…[8][9][10][11][12] Ihre Attraktivität beruht unter anderem auf ihren hervorragenden optoelektronischen Eigenschaften, ihrer Kompatibilität mit lçsungsbasierten Herstellungsverfahren, ihrer marktreifen Photovoltaikleistung und ihren gut positionierten Energiebändern, um die Wasserstoffentwicklungsreaktion (HER) auszulçsen. [13][14][15] Während typische Chalkopyrit-Photokathoden eine komplexe "Vergrabener Übergang"-Architektur verwenden, [15,16] zeigte eine direkte Chalkopyrit/ Elektrolyt-Grenzfläche kürzlich stundenstabile H 2 -bezogene Sättigungsphotostrçme nahe der theoretischen Grenze, basierend auf ihrer Bandlücke. [13,14] Angesichts der mehratomigen Oberfläche von Chalkopyriten ist dies zwar vielversprechend, aber der Ursprung der Oberflächenreaktivität muss noch geklärt werden, und außerdem fehlt noch eine Erklärung für die geringeren Einschaltspannungen (V on ), die die reinen Chalkopyrite aufweisen.…”
unclassified
“…[13][14][15] Während typische Chalkopyrit-Photokathoden eine komplexe "Vergrabener Übergang"-Architektur verwenden, [15,16] zeigte eine direkte Chalkopyrit/ Elektrolyt-Grenzfläche kürzlich stundenstabile H 2 -bezogene Sättigungsphotostrçme nahe der theoretischen Grenze, basierend auf ihrer Bandlücke. [13,14] Angesichts der mehratomigen Oberfläche von Chalkopyriten ist dies zwar vielversprechend, aber der Ursprung der Oberflächenreaktivität muss noch geklärt werden, und außerdem fehlt noch eine Erklärung für die geringeren Einschaltspannungen (V on ), die die reinen Chalkopyrite aufweisen.…”
unclassified