Laser initiated reactions in N2O clusters studied by time-sliced ion velocity imaging technique J. Chem. Phys. 139, 044307 (2013) We present a new photo-fragment imaging spectrometer, which employs a movable repeller in a single field imaging geometry. This innovation offers two principal advantages. First, the optimal fields for velocity mapping can easily be achieved even using a large molecular beam diameter (5 mm); the velocity resolution (better than 1%) is sufficient to easily resolve photo-electron recoil in (2 + 1) resonant enhanced multiphoton ionization of N 2 photoproducts from N 2 O or from molecular beam cooled N 2 . Second, rapid changes between spatial imaging, velocity mapping, and slice imaging are straightforward. We demonstrate this technique's utility in a re-investigation of the photodissociation of N 2 O. Using a hot nozzle, we observe slice images that strongly depend on nozzle temperature. Our data indicate that in our hot nozzle expansion, only pure bending vibrations -(0, v 2 , 0) -are populated, as vibrational excitation in pure stretching or bend-stretch combination modes are quenched via collisional near-resonant V-V energy transfer to the nearly degenerate bending states. We derive vibrationally state resolved absolute absorption cross-sections for (0, v 2 ≤ 7, 0). These results agree well with previous work at lower values of v 2 , both experimental and theoretical. The dissociation energy of N 2 O with respect to the O( 1 D) + N 2 1 + g asymptote was determined to be 3.65 ± 0.02 eV.