Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The research aimed to identify and collect issues discussed regarding Islamic banking from user activity, sentimen, and content on Twitter. This study used a qualitative approach by collecting data on 145,475 conversations from Twitter using the Twitter Crawling technique with the Drone Emprit Academy (DEA) engine from 28 July 2020 – 10 March 2023 in Indonesia. Text data mining is used with the help of the DEA system by analyzing sentimen, Social Network Analysis (SNA), and other Twitter data analysis. The results showed that the highest number of tweets related to Islamic banking came from the number of tweets which were dominated by millennials and millennials with positive sentimens of 66%, then negative sentimens of 28% and neutral sentimens of 5%. From these results, both positive, negative and neutral sentimens are a challenge for various stakeholders in the field, including academics, government and others, in a more massive manner to explain and provide a more solid and stronger understanding of Islamic finance, especially Islamic banking.Keywords: Islamic Banking; Sentimen Analysis; Twitter; Academic Emprit Drone ABSTRAKPenelitian bertujuan untuk mengindetifikasi dan mengumpulkan isu yang dibahas terkait perbankan syariah dari aktivitas pengguna, sentimen, dan konten di Twitter. Metode ini menggunakan pendekatan kualitatif dengan mengumpulkan data 145.475 percakapan dari Twitter menggunakan teknik Twitter Crawling dengan mesin Drone Emprit Academy (DEA) dari tanggal 28 Juli 2020 – 10 Maret 2023 di Indonesia. Text data mining digunakan dengan bantuan sistem DEA dengan menganalisis sentimen, Social Network Analysis (SNA), dan analisis data Twitter lainnya. Hasil penelitian menunjukkan jumlah tweet tertinggi terkait perbankan syariah berasal dari jumlah tweet yang didominasi oleh kaum millennials dan zillenial dengan sentimen positif sebesar 66%, kemudian sentimen negatif 28% dan sentimen netral sebesar 5%. Dari hasil tersebut, baik sentimen positif, negative, maupun netral menjadi tantangan bagi berbagai pemangku kepentingan di lapangan, termasuk akademisi, pemerintah, dan lainnya, secara lebih massif untuk menjelaskan dan memberikan pemahaman yang lebih kokoh dan kuat tentang keuangan syariah khususnya perbankan syariah. Kata Kunci: Perbankan Syariah, Analisis Sentimen, Twitter, Drone Emprit Akademik REFERENCES Ahmad, A., Sohail, A., & Hussain, A. (2021). Emergence of financial technology in Islamic banking industry and its influence on bank performance in covid-19 scenario: A case of developing economy. Gomal University Journal of Research, 37(1), 97-109. Alotaibi, M. S. (2013). The Impact of Twitter on Saudi banking sectors in the presence of social media: An evaluative study. International Research: Journal of Library & Information Science, 3(4), 618–630. Anwar, S. A. (2019). Revolusi industri 4.0 Islam dalam merespon tantangan teknologi digitalisasi. At Tuhfah: Jurnal Studi KeIslaman, 8(2), 16-28. doi:10.36840/jurnalstudikeislaman.v8i2.203 Anwar, S., Marlius, D., & Badri, J. (2022). Sharia bank in the middle of the disruptive era. Al-Masraf: Jurnal Lembaga Keuangan dan Perbankan, 7(2), 139-151. doi:10.15548/al-masraf.v7i2.416 Arianto, B. (2021). Media Sosial sebagai Saluran Aspirasi Kewargaan: Studi Pembahasan RUU Cipta Kerja. Jurnal PIKMA : Publikasi Ilmu Komunikasi Media dan Cinema, 3(2), 107–127. doi:10.24076/pikma.v3i2.469 Bank Indonesia. (2021). Laporan Perekonomian Indonesia 2021. Retrieved from https://www.bi.go.id/id/publikasi/laporan/Pages/LPI_2021.aspx Bappenas. (2018). Masterplan ekonomi syariah Indonesia 2019-2024. Retrieved from https://kneks.go.id/storage/upload/1573459280-Masterplan%20Eksyar_Preview.pdf Cahyono, E. F., Rani, L. N., & Kassim, S. (2020). Perceptions of the 7P marketing mix of Islamic banks in Indonesia: What Do Twitter Users Say About It? International Journal of Innovation, Creativity and Change, 11(11), 300–319. Dang-Xuan, L., Stieglitz, S., Wladarsch, J., & Neuberger, C. (2017). An investigation of influentials and the role of sentimen in political communication on Twitter during election periods. Information, Communication and Society, 16(5), 1-31. doi:10.1080/1369118X.2013.783608 Fahmi, D. Y., Hartoyo, & Zulbainarni, N. (2021). Mining Social Media (Twitter) Data for Corporate Image Analysis: A Case Study in the Indonesian Mining Industry. Journal of Physics: Conference Series, 1811, 1-10. doi:10.1088/1742-6596/1811/1/012107 Fahmi, I. (2016). Drone Emprit: Software for media monitoring and analytics. Retrieved from https://pers.droneemprit.id/how-to-cite-drone-emprit/ Fahmi, I. (2018). Drone Emprit Academic: Software for social media monitoring and analytics. Retrieved from Available at http://dea.uii.ac.id. Fakhrunnas, F., & Anto, M. B. H. (2023). Assessing the Islamic banking contribution to financial stability in Indonesia : A non-linear approach. Banks and Banks System, 18(1), 150-162. doi:10.21511/bbs.18(1).2023.13 Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An integrated approach to communication theory and research (pp. 432-448). London: Routledge. Haidar, A., As-Salafiyah, A., & Herindar, E. (2022). Sentimen analysis of digital sharia banking. Ekonomi Islam Indonesia, 4(1). doi:10.58968/eii.v4i1.72 Kemp, S. (2022). Digital 2022 global overview report. Retrieved from https://datareportal.com/reports/digital-2022-global-overview-report Izza, N. N. (2022). Scientometric analysis of Islamic bank in Indonesia. Faraid & Wealth Management, 2(1). doi:10.58968/fwm.v2i1.161 Jackson, S. J., Bailey, M., & Welles, B. F. (2018). #GirlsLikeUs: Trans advocacy and community building online. New Media and Society, 20(5), 1868–1888. doi:10.1177/1461444817709276 Liang, F., & Lu, S. (2023). The dynamics of event-based political influencers on Twitter: A longitudinal analysis of influential accounts during Chinese political events. Social Media+ Society, 9(2), doi:20563051231177946. Liu, B. (2015). Sentimen analysis: Mining opinions, sentimens, and emotions. Cambridge: The Cambridge University Press. McCombs, M., & Valenzuela, S. (2020). Setting the agenda: Mass media and public opinion (3rd edition). New York: John Wiley & Sons. Miftahuddin, A., Perdana, Y., & Sandjaya, T. (2023). Persepsi masyarakat terhadap tren perkembangan industri halal di media sosial: Analisis respons di Indonesia. Responsive: Jurnal Pemikiran dan Penelitian Bidang Administrasi, Sosial, Humaniora, dan Kebijakan Publik, 5(4), 233–238. doi: 10.24198/responsive.v5i4.44555 Mosioi, H. B. S. O., & Mailoa, E. (2021). Analisa sentimen publik terkait Otonomi Khusus (OTSUS) di Papua dengan pendekatan sains data. Prosiding Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK), 5(1), 153–156. Mude, G., & Undale, S. (2023). Social media usage: A comparison between generation Y and generation Z I India. International Journal of E-Business Research, 19(1), 1–20. doi:10.4018/ijebr.317889 OJK. (2020). Indonesia Islamic banking development roadmap. Retrieved from https://ojk.go.id/en/kanal/syariah/berita-dan-kegiatan/publikasi/Pages/Indonesia-Islamic-Banking-Development-Roadmap.aspx OJK. (2020). Strategi nasional literasi keuangan Indonesia 2021-2025. Retrieved from https://www.ojk.go.id/id/berita-dan-kegiatan/publikasi/Documents/Pages/Strategi-Nasional-Literasi-Keuangan-Indonesia-2021-2025/Strategi%20Nasional%20Literasi%20Keuangan%20Indonesia%202021-2025.pdf OJK. (2021). Laporan perkembangan keuangan syariah Indonesia 2020. Retrieved from https://ojk.go.id/id/kanal/syariah/data-dan-statistik/laporan-perkembangan-keuangan-syariah-indonesia/Pages/Laporan-Perkembangan-Keuangan-Syariah-Indonesia-2020.aspx OJK. (2021). Statistik perbankan syariah. Retrieved from https://www.ojk.go.id/id/kanal/perbankan/data-dan-statistik/statistik-perbankan-syariah/Pages/Statistik-Perbankan-Syariah.aspx OJK. (2022). Siaran pers: Survei nasional literasi dan inklusi keuangan tahun 2022. Retrieved from https://www.ojk.go.id/id/berita-dan-kegiatan/siaran-pers/Pages/Survei-Nasional-Literasi-dan-Inklusi-Keuangan-Tahun-2022.aspx OJK. (2023). Peningkatan Literasi dan Inklusi Keuangan di Sektor Jasa Keuangan Bagi Konsumen dan Masyarakat. Retrieved from https://www.ojk.go.id/ojk-institute/id/capacitybuilding/upcoming/1340/memperkuat-literasi-dan-inklusi-keuangan-syariah Rahmanti, A. R., Chien, C. H., Nursetyo, A. A., Husnayain, A., Wiratama, B. S., Fuad, A., Yang, H. C., & Li, Y. C. J. (2022). Social media sentimen analysis to monitor the performance of vaccination coverage during the early phase of the national COVID-19 vaccine rollout. Computer Methods and Programs in Biomedicine, 221. doi:10.1016/j.cmpb.2022.106838 Rahmat, F., & Rantisi, A. A. (2021). Islamic banking on Twitter: An analysis of users and networks. Journal of Islamic Marketing, 12(2), 276-293. doi:10.1108/JIMA-11-2020-0388. Rahmayati, R. (2021). Competition strategy in the islamic banking industry: An empirical review. International Journal of Business, Economics, aAnd Social Development, 2(2), 65-71. Rossana, A., & Firmansyah, E. A. (2019). Analisis Rasch pada atribut perbankan syariah: Studi pada generasi milenial. Jurnal Ilmiah Ekonomi Islam, 5(3), 145-156. doi:10.29040/jiei.v5i3.530 Rusydiana, A. S., & As-salafiyah, A. (2022). Shariah Fintech : An Analysis of Twitter Sentimen. Ekonomi Islam Indonesia, 4(2). doi:10.58968/eii.v4i2.98 Scott, J. (2012). What is Social Network Analysis?. London: Bloomsbury Academic Septiani, E., Mulyadi, M., & Serip, S. (2021). Analisis kepercayaan generasi milenial terhadap lembaga keuangan syariah. Distribusi: Journal of Management and Business, 9(2), 147–160. doi:10.29303/distribusi.v9i2.163 Sotudeh, H., Saber, Z., Aloni, F. G., Mirzabeigi, M., & Khunjush, F. (2022). A longitudinal study of the evolution of opinions about open access and its main features: A twitter sentiment analysis. Scientometrics, 127(10), 5587-5611. doi:10.1007/s11192-022-04502-7 Syafrida, I., Aminah, A., & Awaludin, T. (2020). Keputusan penggunaan jasa perbankan syariah: Perspektif nasabah milenial. BISNIS : Jurnal Bisnis dan Manajemen Islam, 8(1), 49. doi:10.21043/bisnis.v8i1.6691 Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentimen analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–25. doi:10.1002/widm.1253
The research aimed to identify and collect issues discussed regarding Islamic banking from user activity, sentimen, and content on Twitter. This study used a qualitative approach by collecting data on 145,475 conversations from Twitter using the Twitter Crawling technique with the Drone Emprit Academy (DEA) engine from 28 July 2020 – 10 March 2023 in Indonesia. Text data mining is used with the help of the DEA system by analyzing sentimen, Social Network Analysis (SNA), and other Twitter data analysis. The results showed that the highest number of tweets related to Islamic banking came from the number of tweets which were dominated by millennials and millennials with positive sentimens of 66%, then negative sentimens of 28% and neutral sentimens of 5%. From these results, both positive, negative and neutral sentimens are a challenge for various stakeholders in the field, including academics, government and others, in a more massive manner to explain and provide a more solid and stronger understanding of Islamic finance, especially Islamic banking.Keywords: Islamic Banking; Sentimen Analysis; Twitter; Academic Emprit Drone ABSTRAKPenelitian bertujuan untuk mengindetifikasi dan mengumpulkan isu yang dibahas terkait perbankan syariah dari aktivitas pengguna, sentimen, dan konten di Twitter. Metode ini menggunakan pendekatan kualitatif dengan mengumpulkan data 145.475 percakapan dari Twitter menggunakan teknik Twitter Crawling dengan mesin Drone Emprit Academy (DEA) dari tanggal 28 Juli 2020 – 10 Maret 2023 di Indonesia. Text data mining digunakan dengan bantuan sistem DEA dengan menganalisis sentimen, Social Network Analysis (SNA), dan analisis data Twitter lainnya. Hasil penelitian menunjukkan jumlah tweet tertinggi terkait perbankan syariah berasal dari jumlah tweet yang didominasi oleh kaum millennials dan zillenial dengan sentimen positif sebesar 66%, kemudian sentimen negatif 28% dan sentimen netral sebesar 5%. Dari hasil tersebut, baik sentimen positif, negative, maupun netral menjadi tantangan bagi berbagai pemangku kepentingan di lapangan, termasuk akademisi, pemerintah, dan lainnya, secara lebih massif untuk menjelaskan dan memberikan pemahaman yang lebih kokoh dan kuat tentang keuangan syariah khususnya perbankan syariah. Kata Kunci: Perbankan Syariah, Analisis Sentimen, Twitter, Drone Emprit Akademik REFERENCES Ahmad, A., Sohail, A., & Hussain, A. (2021). Emergence of financial technology in Islamic banking industry and its influence on bank performance in covid-19 scenario: A case of developing economy. Gomal University Journal of Research, 37(1), 97-109. Alotaibi, M. S. (2013). The Impact of Twitter on Saudi banking sectors in the presence of social media: An evaluative study. International Research: Journal of Library & Information Science, 3(4), 618–630. Anwar, S. A. (2019). Revolusi industri 4.0 Islam dalam merespon tantangan teknologi digitalisasi. At Tuhfah: Jurnal Studi KeIslaman, 8(2), 16-28. doi:10.36840/jurnalstudikeislaman.v8i2.203 Anwar, S., Marlius, D., & Badri, J. (2022). Sharia bank in the middle of the disruptive era. Al-Masraf: Jurnal Lembaga Keuangan dan Perbankan, 7(2), 139-151. doi:10.15548/al-masraf.v7i2.416 Arianto, B. (2021). Media Sosial sebagai Saluran Aspirasi Kewargaan: Studi Pembahasan RUU Cipta Kerja. Jurnal PIKMA : Publikasi Ilmu Komunikasi Media dan Cinema, 3(2), 107–127. doi:10.24076/pikma.v3i2.469 Bank Indonesia. (2021). Laporan Perekonomian Indonesia 2021. Retrieved from https://www.bi.go.id/id/publikasi/laporan/Pages/LPI_2021.aspx Bappenas. (2018). Masterplan ekonomi syariah Indonesia 2019-2024. Retrieved from https://kneks.go.id/storage/upload/1573459280-Masterplan%20Eksyar_Preview.pdf Cahyono, E. F., Rani, L. N., & Kassim, S. (2020). Perceptions of the 7P marketing mix of Islamic banks in Indonesia: What Do Twitter Users Say About It? International Journal of Innovation, Creativity and Change, 11(11), 300–319. Dang-Xuan, L., Stieglitz, S., Wladarsch, J., & Neuberger, C. (2017). An investigation of influentials and the role of sentimen in political communication on Twitter during election periods. Information, Communication and Society, 16(5), 1-31. doi:10.1080/1369118X.2013.783608 Fahmi, D. Y., Hartoyo, & Zulbainarni, N. (2021). Mining Social Media (Twitter) Data for Corporate Image Analysis: A Case Study in the Indonesian Mining Industry. Journal of Physics: Conference Series, 1811, 1-10. doi:10.1088/1742-6596/1811/1/012107 Fahmi, I. (2016). Drone Emprit: Software for media monitoring and analytics. Retrieved from https://pers.droneemprit.id/how-to-cite-drone-emprit/ Fahmi, I. (2018). Drone Emprit Academic: Software for social media monitoring and analytics. Retrieved from Available at http://dea.uii.ac.id. Fakhrunnas, F., & Anto, M. B. H. (2023). Assessing the Islamic banking contribution to financial stability in Indonesia : A non-linear approach. Banks and Banks System, 18(1), 150-162. doi:10.21511/bbs.18(1).2023.13 Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An integrated approach to communication theory and research (pp. 432-448). London: Routledge. Haidar, A., As-Salafiyah, A., & Herindar, E. (2022). Sentimen analysis of digital sharia banking. Ekonomi Islam Indonesia, 4(1). doi:10.58968/eii.v4i1.72 Kemp, S. (2022). Digital 2022 global overview report. Retrieved from https://datareportal.com/reports/digital-2022-global-overview-report Izza, N. N. (2022). Scientometric analysis of Islamic bank in Indonesia. Faraid & Wealth Management, 2(1). doi:10.58968/fwm.v2i1.161 Jackson, S. J., Bailey, M., & Welles, B. F. (2018). #GirlsLikeUs: Trans advocacy and community building online. New Media and Society, 20(5), 1868–1888. doi:10.1177/1461444817709276 Liang, F., & Lu, S. (2023). The dynamics of event-based political influencers on Twitter: A longitudinal analysis of influential accounts during Chinese political events. Social Media+ Society, 9(2), doi:20563051231177946. Liu, B. (2015). Sentimen analysis: Mining opinions, sentimens, and emotions. Cambridge: The Cambridge University Press. McCombs, M., & Valenzuela, S. (2020). Setting the agenda: Mass media and public opinion (3rd edition). New York: John Wiley & Sons. Miftahuddin, A., Perdana, Y., & Sandjaya, T. (2023). Persepsi masyarakat terhadap tren perkembangan industri halal di media sosial: Analisis respons di Indonesia. Responsive: Jurnal Pemikiran dan Penelitian Bidang Administrasi, Sosial, Humaniora, dan Kebijakan Publik, 5(4), 233–238. doi: 10.24198/responsive.v5i4.44555 Mosioi, H. B. S. O., & Mailoa, E. (2021). Analisa sentimen publik terkait Otonomi Khusus (OTSUS) di Papua dengan pendekatan sains data. Prosiding Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK), 5(1), 153–156. Mude, G., & Undale, S. (2023). Social media usage: A comparison between generation Y and generation Z I India. International Journal of E-Business Research, 19(1), 1–20. doi:10.4018/ijebr.317889 OJK. (2020). Indonesia Islamic banking development roadmap. Retrieved from https://ojk.go.id/en/kanal/syariah/berita-dan-kegiatan/publikasi/Pages/Indonesia-Islamic-Banking-Development-Roadmap.aspx OJK. (2020). Strategi nasional literasi keuangan Indonesia 2021-2025. Retrieved from https://www.ojk.go.id/id/berita-dan-kegiatan/publikasi/Documents/Pages/Strategi-Nasional-Literasi-Keuangan-Indonesia-2021-2025/Strategi%20Nasional%20Literasi%20Keuangan%20Indonesia%202021-2025.pdf OJK. (2021). Laporan perkembangan keuangan syariah Indonesia 2020. Retrieved from https://ojk.go.id/id/kanal/syariah/data-dan-statistik/laporan-perkembangan-keuangan-syariah-indonesia/Pages/Laporan-Perkembangan-Keuangan-Syariah-Indonesia-2020.aspx OJK. (2021). Statistik perbankan syariah. Retrieved from https://www.ojk.go.id/id/kanal/perbankan/data-dan-statistik/statistik-perbankan-syariah/Pages/Statistik-Perbankan-Syariah.aspx OJK. (2022). Siaran pers: Survei nasional literasi dan inklusi keuangan tahun 2022. Retrieved from https://www.ojk.go.id/id/berita-dan-kegiatan/siaran-pers/Pages/Survei-Nasional-Literasi-dan-Inklusi-Keuangan-Tahun-2022.aspx OJK. (2023). Peningkatan Literasi dan Inklusi Keuangan di Sektor Jasa Keuangan Bagi Konsumen dan Masyarakat. Retrieved from https://www.ojk.go.id/ojk-institute/id/capacitybuilding/upcoming/1340/memperkuat-literasi-dan-inklusi-keuangan-syariah Rahmanti, A. R., Chien, C. H., Nursetyo, A. A., Husnayain, A., Wiratama, B. S., Fuad, A., Yang, H. C., & Li, Y. C. J. (2022). Social media sentimen analysis to monitor the performance of vaccination coverage during the early phase of the national COVID-19 vaccine rollout. Computer Methods and Programs in Biomedicine, 221. doi:10.1016/j.cmpb.2022.106838 Rahmat, F., & Rantisi, A. A. (2021). Islamic banking on Twitter: An analysis of users and networks. Journal of Islamic Marketing, 12(2), 276-293. doi:10.1108/JIMA-11-2020-0388. Rahmayati, R. (2021). Competition strategy in the islamic banking industry: An empirical review. International Journal of Business, Economics, aAnd Social Development, 2(2), 65-71. Rossana, A., & Firmansyah, E. A. (2019). Analisis Rasch pada atribut perbankan syariah: Studi pada generasi milenial. Jurnal Ilmiah Ekonomi Islam, 5(3), 145-156. doi:10.29040/jiei.v5i3.530 Rusydiana, A. S., & As-salafiyah, A. (2022). Shariah Fintech : An Analysis of Twitter Sentimen. Ekonomi Islam Indonesia, 4(2). doi:10.58968/eii.v4i2.98 Scott, J. (2012). What is Social Network Analysis?. London: Bloomsbury Academic Septiani, E., Mulyadi, M., & Serip, S. (2021). Analisis kepercayaan generasi milenial terhadap lembaga keuangan syariah. Distribusi: Journal of Management and Business, 9(2), 147–160. doi:10.29303/distribusi.v9i2.163 Sotudeh, H., Saber, Z., Aloni, F. G., Mirzabeigi, M., & Khunjush, F. (2022). A longitudinal study of the evolution of opinions about open access and its main features: A twitter sentiment analysis. Scientometrics, 127(10), 5587-5611. doi:10.1007/s11192-022-04502-7 Syafrida, I., Aminah, A., & Awaludin, T. (2020). Keputusan penggunaan jasa perbankan syariah: Perspektif nasabah milenial. BISNIS : Jurnal Bisnis dan Manajemen Islam, 8(1), 49. doi:10.21043/bisnis.v8i1.6691 Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentimen analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–25. doi:10.1002/widm.1253
This study examined the factors that influence the intention to buy food labeled halal among Muslim consumers in Indonesia using mixed methods, this research used qualitative analysis by identifying trending topics related to 2.665 conversations on halal labels on Twitter in Indonesia using Drone Emprit Academic (DEA) and NVivo 12 Plus to uncover the underlying perception. A quantitative hypothesis was then developed based on the qualitative investigation and the adoption literature. Survey data was collected from 407 Muslim consumers in Indonesia using SEM-PLS. The results showed that the variables halal labeled food intention, halal labeled food safety, and halal labeled food knowledge showed a significant and positive influence on the intention to buy halal labeled food and repeat purchases of halal labeled food. This shows increasing consumer awareness about product halalness, health, and perceived value, which in turn encourages consumer interest to buy food products labeled halal. Keywords: purchase intention; halal-labelled food; mixed-methods ABSTRAK Penelitian ini mengkaji faktor-faktor yang memengaruhi minat beli makanan berlabel halal di kalangan konsumen muslim di Indonesia dengan menggunakan metode campuran. analisis kualitatif dengan mengidentifikasi trending topik terkait 2.665 percakapan label halal di Twitter menggunakan Drone Emprit Academic (DEA) dan NVivo 12 Plus untuk mengungkap persepsi yang mendasarinya. Hipotesis kuantitatif kemudian dikembangkan berdasarkan penyelidikan kualitatif dan literatur adopsi. Data survei dikumpulkan dari 407 konsumen muslim dan dianalisis menggunakan pendekatan SEM-PLS. Hasilnya variabel niat makanan berlabel halal, keamanan makanan berlabel halal, dan pengetahuan makanan berlabel halal menunjukkan pengaruh yang signifikan dan positif terhadap niat beli makanan berlabel halal dan pengulangan pembelian makanan berlabel halal. Hal ini menunjukkan meningkatnya kesadaran konsumen tentang kehalalan produk, kesehatan, dan nilai yang dirasakan, yang selanjutnya mendorong minat konsumen untuk membeli produk makanan berlabel halal. Kata Kunci: niat beli; makanan berlabel halal; mixed methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.