Early detection of ovarian cancer has been a challenge to manage the high mortality rate caused by this deadly disease. The trends in mortality have been reduced by the scientific contributions from the corners across the globe, however accounting for the fifth leading cause of gynecological mortality. The complexities in the clinical presentation, origin of tumor, and gene expression profiles had added to much difficulty in understanding and diagnosis of the disease. Stage 1 diagnosis of ovarian cancer improves the 5-year survival rate to around 92%. Cancer antigen-125 (CA-125) is the gold standard tumor marker found at abnormally high levels in the blood of many women in ovarian cancer. However, many non-cancerous conditions exhibit high levels of CA-125 and several women have normal CA-125 level in the early stage of ovarian cancer, suggesting CA-125 biomarker is not specific enough for the screening of early stage ovarian cancer. In addition, several other biomarkers, including HE4 have been added in the diagnostic field for higher sensitivity and specificity in the diagnosis and progression of ovarian cancer. HE4 is a prospective single serum biomarker which has been approved by the FDA to monitor the disease progression in epithelial ovarian cancer. However, owing to low sensitivity and specificity, combination of a panel of biomarkers has been proposed in the diagnosis of the disease. Based on extensive biomarkers research findings, here we discuss current trends in diagnostic approaches and updated potential several panels of cancer biomarkers for early detection of ovarian cancer. It has been recently reported that CA125 in combinations with two or more biomarkers have outperformed single biomarker assays for early detection of the disease. Moreover, CA-125 with CA 19–9, EGFR, G-CSF, Eotaxin, IL-2R, cVCAM, MIF improved the sensitivity with 98.2 % and specificity of 98.7% in early stage detection of ovarian cancer. Overall, this review demonstrates a panel of biomarkers signature as the potential tool for prototype development in future and other advanced approaches for early diagnosis of ovarian cancer to avoid false-diagnosis and excessive cost.