1998
DOI: 10.2320/matertrans1989.39.668
|View full text |Cite
|
Sign up to set email alerts
|

Oscillation Modes of Slag-Metallic Bath Interface

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0
1

Year Published

2003
2003
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 5 publications
0
6
0
1
Order By: Relevance
“…phonons in anharmonic lattices [3], ion acoustic solitons [4] and van Alfvén waves in collisionless plasma [5], Schottky barrier transmission lines [6] as well as in the models of traffic congestion [7]. A subclass of hyperbolic surfaces [8], slag-metallic bath interfaces [9], curve motion [10], meandering ocean jets [11] and other models in fluid mechanics [12] are also related to the MKdV equation. Furthermore, it has been shown that the dynamics of thin elastic rods can also be reduced to the MKdV equation [13].…”
Section: Introductionmentioning
confidence: 99%
“…phonons in anharmonic lattices [3], ion acoustic solitons [4] and van Alfvén waves in collisionless plasma [5], Schottky barrier transmission lines [6] as well as in the models of traffic congestion [7]. A subclass of hyperbolic surfaces [8], slag-metallic bath interfaces [9], curve motion [10], meandering ocean jets [11] and other models in fluid mechanics [12] are also related to the MKdV equation. Furthermore, it has been shown that the dynamics of thin elastic rods can also be reduced to the MKdV equation [13].…”
Section: Introductionmentioning
confidence: 99%
“…Suppose (1 + |x|) (q − q ± ) ∈ L 1 (R ± ), then Eq. ( 4) has unique solutions Φ ± (x, t; z) defined by (15) in Σ. Besides, Φ +1 (x, t; z) and Φ −2 (x, t; z) can be extended analytically to D + and continuously to D + ∪ Σ while Φ −1 (x, t; z) and Φ +2 (x, t; z) can be extended analytically to D − and continuously to D − ∪ Σ.…”
Section: Properties Of Jost Solutionsmentioning
confidence: 99%
“…Eq. ( 1) arises in many different physical contexts, such as acoustic wave and phonons in a certain anharmonic lattice [3,4], Alfvén wave in a cold collision-free plasma [5,6], thin elastic rods [7], meandering ocean currents [8], dynamics of traffic flow [9,10], hyperbolic surfaces [11], slag-metallic bath interfaces [15], and Schottky barrier transmission lines [16]. The well-known Miura transform [2,12] u(x, t) = −σq 2 (x, t) + √ σq x (x, t) established the relation between Eq.…”
Section: Introductionmentioning
confidence: 99%
“…Рассмотрим модифицированное уравнение Кортевега-де Фриза (мКдФ) с фокусировкой u t + u xxx + 6|u| 2 u x = 0, (1.1) где нижние индексы x и t обозначают соответствующие частные производные, u представляет собой вещественную скалярную функцию, (x, t) ∈ R 2 . Уравнение мКдФ возникает при описании динамики тонких упругих стержней [1], фононов на ангармонических решетках [2], меандрирущих океанических течений [3], дорожных пробок [4]- [7], гиперболических поверхностей [8], акустических ионных солитонов [9], волн Альвена в бесстолкновительных плазмах [10], поверхностей раздела шлак-металл в мартеновской ванне [11] и кривых пересечения барьера Шоттки [12]. В настоящей работе предлагается метод построения некоторых точных решений уравнения (1.1), глобально аналитичных во всей плоскости (x, t) и экспоненциально убывающих при x → ±∞ для каждого фиксированного t ∈ R. Построение таких решений основано на методе обратной задачи рассеяния (МОЗР) [13]- [17].…”
Section: Introductionunclassified