2021
DOI: 10.1063/5.0052848
|View full text |Cite
|
Sign up to set email alerts
|

Optical phonon modes, static and high-frequency dielectric constants, and effective electron mass parameter in cubic In2O3

Abstract: A complete set of all optical phonon modes predicted by symmetry for bixbyite structure indium oxide is reported here from a combination of far-infrared and infrared spectroscopic ellipsometry, as well as first principle calculations. Dielectric function spectra measured on high quality, marginally electrically conductive melt grown single bulk crystals are obtained on a wavelength-by-wavelength (a.k.a. point-by-point) basis and by numerical reduction of a subtle free charge carrier Drude model contribution. A… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(8 citation statements)
references
References 72 publications
(102 reference statements)
0
6
0
2
Order By: Relevance
“…Figure 7 shows that the experimental data were well fitted using w  LO = 47 meV, which is not significantly different from values reported elsewhere. 36,37,41) The electron mobility showed a dependence on optical phonon scattering at about 200 K or higher. However, at lower temperatures, the mobility was limited mainly by ionized impurity scattering (m II ), which decreased with the decreasing temperature.…”
Section: Resultsmentioning
confidence: 99%
“…Figure 7 shows that the experimental data were well fitted using w  LO = 47 meV, which is not significantly different from values reported elsewhere. 36,37,41) The electron mobility showed a dependence on optical phonon scattering at about 200 K or higher. However, at lower temperatures, the mobility was limited mainly by ionized impurity scattering (m II ), which decreased with the decreasing temperature.…”
Section: Resultsmentioning
confidence: 99%
“…where a 0 is the Bohr radius of hydrogen, ɛ r is the relative permittivity, m * e is the electron effective mass, and m e the electron mass. Taking the most reliable known values for bixbyite indium oxide (𝜖 r ≈ 10.55 [48] and m * e = 0.18 m e near the bottom of the conduction band [37,49] ) gives an estimated a* of 3.1 nm. It is likely that the permittivity of amorphous indium oxide differs somewhat, but it is unimportant for this example calculation.…”
Section: Electronicmentioning
confidence: 99%
“…The effective Bohr radius is given by, abadbreak=a0εrme/me$$\begin{equation}{a}^* = \frac{{{a}_0{\varepsilon }_{\mathrm{r}}}}{{m_{\mathrm{e}}^*/{m}_{\mathrm{e}}}}\end{equation}$$where a 0 is the Bohr radius of hydrogen, ɛ r is the relative permittivity, mnormale$m_{\mathrm{e}}^*$ is the electron effective mass, and m e the electron mass. Taking the most reliable known values for bixbyite indium oxide (ε r ≈ 10.55 [ 48 ] and me=0.33em0.180.16emme$m_{\mathrm{e}}^* = \ 0.18\,{m}_{\mathrm{e}}$ near the bottom of the conduction band [ 37,49 ] ) gives an estimated a * of 3.1 nm. It is likely that the permittivity of amorphous indium oxide differs somewhat, but it is unimportant for this example calculation.…”
Section: Properties Of Indium Oxidementioning
confidence: 99%
“…При известном значении подвижности электронов (µ = 60 см 2 /(В • с) [3,[5][6][7]17,[29][30][31]) была получена температурная зависимость концентрации электронов (n) и дебаевской длины экранирования (L D ) (рис. 6).…”
Section: механизм газовой чувствительности пленок In 2 Ounclassified
“…Оксид индия -металлооксидный полупроводник n-типа проводимости, который за счет оптической прозрачности в видимой области спектра (ширина запрещенной зоны E g = 3.5−3.7 эВ [1][2][3][4][5]), низкой эффективной массы электронов (m n = 0.16−0.25 m [3,6,7]), высокой каталитической активности и проводимости, вызванной наличием дважды ионизированных вакансий кислорода, получил широкое распространение и может быть использован в газовых сенсорах, солнечных элементах, сенсорных и жидкокристаллических дисплеях, тонкопленочных транзисторах, оптоэлектронных и фотоэлектрических устройствах, контактах и диодах Шоттки [1][2][3][4][5][8][9][10][11][12][13][14][15][16][17][18]. Столь обширные и разнообразные области применения чаще относят к In 2 O 3 : Sn [1,3,5,8], в то время как свойства нелегированного In 2 O 3 наиболее активно исследуют для газовой сенсорики [1,2,[11][12][13][14][15][16][17][18].…”
Section: Introductionunclassified