Submerged and confined multiple jet impingement is widely implemented in cooling applications since it provides high heat transfer coefficients and uniformity over the target plate. Its performance depends on several variables that make it complex and difficult to control. To understand the physical phenomena and characterize the flow field, an in-depth study, using Particle Image Velocimetry (PIV) technique and an heat flux sensor, is conducted in this study. The PIV provides relevant data, but the accuracy of the measurements depends on an effective experimental setup and a careful selection of the most appropriate tracer particles. Therefore, this work presents the purpose-built experimental apparatus and comprises an analysis of the efficiency of different seeding particles. The results demonstrate that olive oil particles are appropriate to track turbulent flows since particles with about 1 μm diameter are obtained by the seeding generator. PIV measurements highlight the complexity of the jet flow impinging on a step surface, which induces a strong flow reversal that affects the jet flow development and the interaction with the adjacent jets. The large-scale structures induced in the vicinity of the target plate are captured by the PIV, as well as the strong fountain flows generated between the adjacent jets. Compared with the flat geometry, the turbulence intensity at the central jet is around 25% higher for the 1 D step, while for the 2 D step, this increase reaches 7.5%. The increased turbulence intensity leads to an heat transfer enhancement. For the 2 D step plate, the Nusselt number recorded is 25% greater than the flat plate. Through this study, relevant insights for several engineering applications that use multiple jet impingement are provided, highlighting that the combination of PIV and heat flux sensors are appropriate to characterize the jet’s flow dynamics and the heat transfer of this complex process.