Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.